The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics

The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2025-03, Vol.220, p.109466, Article 109466
Hauptverfasser: Giovannoni, Moira, Scortica, Anna, Scafati, Valentina, Piccirilli, Emilia, Sorio, Daniela, Benedetti, Manuel, Mattei, Benedetta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109466
container_title Plant physiology and biochemistry
container_volume 220
creator Giovannoni, Moira
Scortica, Anna
Scafati, Valentina
Piccirilli, Emilia
Sorio, Daniela
Benedetti, Manuel
Mattei, Benedetta
description The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology. [Display omitted] •C1-oxidized oligosaccharides have a reduced DAMP activity in A. thaliana.•Fungal OSOXs inactivate cell wall DAMPs similarly to plant OSOXs.•OSOXs can transfer electrons from oligosaccharides to bi-phenoquinones.•Bi-phenoquinones can be converted into oligo-phenols by specific OSOXs.
doi_str_mv 10.1016/j.plaphy.2024.109466
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154402772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0981942824011343</els_id><sourcerecordid>3154402772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-17d13858142118de794df4eeff5aac303f6562b1671bd99d067c2f79f4634ac73</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxi0EYsvCGyDkI5cUO3bj5IJU7fJPWgSH5Ww59ng7VWoHO122PBsPh6MUDhy42JLn9803no-Ql5ytOePNm_16HMy4O61rVsvy1MmmeURWvFWiqpuOPSYr1rW86mTdXpBnOe8ZK6QST8mF6FQnhGAr8ut2BzSBO1oMdxSCo9FTC8NAf5hyxAHvYjbW7kxCB5lipjbhhNYM1MdEr7efv1JjJ7zH6UQx0G0yPbo45kJOOzOgCYaa0teaQHug8DAOESdwtD_9257GB3QmzzahiM-DTRjDPNVcxJ9FOO4gFKXNz8kTb4YML873Jfn2_t3t1cfq5suHT1fbm8qW3TQVV46LdtNyWXPeOlCddF4CeL8xxgomfLNp6p43iveu6xxrlK296rxshDRWiUvyeuk7pvj9CHnSB8zzkkyAeMxa8I2UrFaqLqhcUJtizgm8HhMeTDppzvScm97rJTc956aX3Irs1dnh2B_A_RX9CaoAbxcAyj_vEZLOFiFYcJjATtpF_L_Db0WvrpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154402772</pqid></control><display><type>article</type><title>The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics</title><source>Elsevier ScienceDirect Journals</source><creator>Giovannoni, Moira ; Scortica, Anna ; Scafati, Valentina ; Piccirilli, Emilia ; Sorio, Daniela ; Benedetti, Manuel ; Mattei, Benedetta</creator><creatorcontrib>Giovannoni, Moira ; Scortica, Anna ; Scafati, Valentina ; Piccirilli, Emilia ; Sorio, Daniela ; Benedetti, Manuel ; Mattei, Benedetta</creatorcontrib><description>The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology. [Display omitted] •C1-oxidized oligosaccharides have a reduced DAMP activity in A. thaliana.•Fungal OSOXs inactivate cell wall DAMPs similarly to plant OSOXs.•OSOXs can transfer electrons from oligosaccharides to bi-phenoquinones.•Bi-phenoquinones can be converted into oligo-phenols by specific OSOXs.</description><identifier>ISSN: 0981-9428</identifier><identifier>ISSN: 1873-2690</identifier><identifier>EISSN: 1873-2690</identifier><identifier>DOI: 10.1016/j.plaphy.2024.109466</identifier><identifier>PMID: 39793330</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Bi-phenoquinone ; Cell wall metabolism ; DAMPs ; Guaiacol ; Oligosaccharide oxidase ; Plant immunity</subject><ispartof>Plant physiology and biochemistry, 2025-03, Vol.220, p.109466, Article 109466</ispartof><rights>2025 The Authors</rights><rights>Copyright © 2025 The Authors. Published by Elsevier Masson SAS.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2026-17d13858142118de794df4eeff5aac303f6562b1671bd99d067c2f79f4634ac73</cites><orcidid>0000-0001-9106-2861 ; 0000-0003-2927-6329 ; 0000-0002-2086-7950 ; 0009-0001-3507-6625 ; 0000-0003-0124-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0981942824011343$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39793330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giovannoni, Moira</creatorcontrib><creatorcontrib>Scortica, Anna</creatorcontrib><creatorcontrib>Scafati, Valentina</creatorcontrib><creatorcontrib>Piccirilli, Emilia</creatorcontrib><creatorcontrib>Sorio, Daniela</creatorcontrib><creatorcontrib>Benedetti, Manuel</creatorcontrib><creatorcontrib>Mattei, Benedetta</creatorcontrib><title>The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics</title><title>Plant physiology and biochemistry</title><addtitle>Plant Physiol Biochem</addtitle><description>The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology. [Display omitted] •C1-oxidized oligosaccharides have a reduced DAMP activity in A. thaliana.•Fungal OSOXs inactivate cell wall DAMPs similarly to plant OSOXs.•OSOXs can transfer electrons from oligosaccharides to bi-phenoquinones.•Bi-phenoquinones can be converted into oligo-phenols by specific OSOXs.</description><subject>Bi-phenoquinone</subject><subject>Cell wall metabolism</subject><subject>DAMPs</subject><subject>Guaiacol</subject><subject>Oligosaccharide oxidase</subject><subject>Plant immunity</subject><issn>0981-9428</issn><issn>1873-2690</issn><issn>1873-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAQxi0EYsvCGyDkI5cUO3bj5IJU7fJPWgSH5Ww59ng7VWoHO122PBsPh6MUDhy42JLn9803no-Ql5ytOePNm_16HMy4O61rVsvy1MmmeURWvFWiqpuOPSYr1rW86mTdXpBnOe8ZK6QST8mF6FQnhGAr8ut2BzSBO1oMdxSCo9FTC8NAf5hyxAHvYjbW7kxCB5lipjbhhNYM1MdEr7efv1JjJ7zH6UQx0G0yPbo45kJOOzOgCYaa0teaQHug8DAOESdwtD_9257GB3QmzzahiM-DTRjDPNVcxJ9FOO4gFKXNz8kTb4YML873Jfn2_t3t1cfq5suHT1fbm8qW3TQVV46LdtNyWXPeOlCddF4CeL8xxgomfLNp6p43iveu6xxrlK296rxshDRWiUvyeuk7pvj9CHnSB8zzkkyAeMxa8I2UrFaqLqhcUJtizgm8HhMeTDppzvScm97rJTc956aX3Irs1dnh2B_A_RX9CaoAbxcAyj_vEZLOFiFYcJjATtpF_L_Db0WvrpU</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Giovannoni, Moira</creator><creator>Scortica, Anna</creator><creator>Scafati, Valentina</creator><creator>Piccirilli, Emilia</creator><creator>Sorio, Daniela</creator><creator>Benedetti, Manuel</creator><creator>Mattei, Benedetta</creator><general>Elsevier Masson SAS</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9106-2861</orcidid><orcidid>https://orcid.org/0000-0003-2927-6329</orcidid><orcidid>https://orcid.org/0000-0002-2086-7950</orcidid><orcidid>https://orcid.org/0009-0001-3507-6625</orcidid><orcidid>https://orcid.org/0000-0003-0124-4464</orcidid></search><sort><creationdate>202503</creationdate><title>The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics</title><author>Giovannoni, Moira ; Scortica, Anna ; Scafati, Valentina ; Piccirilli, Emilia ; Sorio, Daniela ; Benedetti, Manuel ; Mattei, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-17d13858142118de794df4eeff5aac303f6562b1671bd99d067c2f79f4634ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bi-phenoquinone</topic><topic>Cell wall metabolism</topic><topic>DAMPs</topic><topic>Guaiacol</topic><topic>Oligosaccharide oxidase</topic><topic>Plant immunity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giovannoni, Moira</creatorcontrib><creatorcontrib>Scortica, Anna</creatorcontrib><creatorcontrib>Scafati, Valentina</creatorcontrib><creatorcontrib>Piccirilli, Emilia</creatorcontrib><creatorcontrib>Sorio, Daniela</creatorcontrib><creatorcontrib>Benedetti, Manuel</creatorcontrib><creatorcontrib>Mattei, Benedetta</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giovannoni, Moira</au><au>Scortica, Anna</au><au>Scafati, Valentina</au><au>Piccirilli, Emilia</au><au>Sorio, Daniela</au><au>Benedetti, Manuel</au><au>Mattei, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics</atitle><jtitle>Plant physiology and biochemistry</jtitle><addtitle>Plant Physiol Biochem</addtitle><date>2025-03</date><risdate>2025</risdate><volume>220</volume><spage>109466</spage><pages>109466-</pages><artnum>109466</artnum><issn>0981-9428</issn><issn>1873-2690</issn><eissn>1873-2690</eissn><abstract>The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology. [Display omitted] •C1-oxidized oligosaccharides have a reduced DAMP activity in A. thaliana.•Fungal OSOXs inactivate cell wall DAMPs similarly to plant OSOXs.•OSOXs can transfer electrons from oligosaccharides to bi-phenoquinones.•Bi-phenoquinones can be converted into oligo-phenols by specific OSOXs.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>39793330</pmid><doi>10.1016/j.plaphy.2024.109466</doi><orcidid>https://orcid.org/0000-0001-9106-2861</orcidid><orcidid>https://orcid.org/0000-0003-2927-6329</orcidid><orcidid>https://orcid.org/0000-0002-2086-7950</orcidid><orcidid>https://orcid.org/0009-0001-3507-6625</orcidid><orcidid>https://orcid.org/0000-0003-0124-4464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0981-9428
ispartof Plant physiology and biochemistry, 2025-03, Vol.220, p.109466, Article 109466
issn 0981-9428
1873-2690
1873-2690
language eng
recordid cdi_proquest_miscellaneous_3154402772
source Elsevier ScienceDirect Journals
subjects Bi-phenoquinone
Cell wall metabolism
DAMPs
Guaiacol
Oligosaccharide oxidase
Plant immunity
title The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20reducing%20end%20of%20cell%20wall%20oligosaccharides%20is%20critical%20for%20DAMP%20activity%20in%20Arabidopsis%20thaliana%20and%20can%20be%20exploited%20by%20oligosaccharide%20oxidases%20in%20the%20reduction%20of%20oxidized%20phenolics&rft.jtitle=Plant%20physiology%20and%20biochemistry&rft.au=Giovannoni,%20Moira&rft.date=2025-03&rft.volume=220&rft.spage=109466&rft.pages=109466-&rft.artnum=109466&rft.issn=0981-9428&rft.eissn=1873-2690&rft_id=info:doi/10.1016/j.plaphy.2024.109466&rft_dat=%3Cproquest_cross%3E3154402772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154402772&rft_id=info:pmid/39793330&rft_els_id=S0981942824011343&rfr_iscdi=true