Lanthanum and cerium added to soil influence microbial carbon and nitrogen cycling genes

The soil microbiome plays an important role in carbon (C) and nitrogen (N) processing and storage and is influenced by rare earth elements (REEs), which can have both direct and indirect effects on plant metabolic processes. Using conventional physicochemical methods and metagenomic-based analyses,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2025-01, Vol.373, p.123509, Article 123509
Hauptverfasser: Song, Alin, Si, Zhiyuan, Xu, Duanyang, Wei, Buqing, Wang, Enzhao, Chong, Fayao, Fan, Fenliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The soil microbiome plays an important role in carbon (C) and nitrogen (N) processing and storage and is influenced by rare earth elements (REEs), which can have both direct and indirect effects on plant metabolic processes. Using conventional physicochemical methods and metagenomic-based analyses, we investigated REEs effects on soil respiration, soil mineral N, soil microbial community structure and functional genes related to C and N metabolism. High doses of cerium (0.16 and 0.32 mmol kg−1 soil) increased CO2 net production rate by 59 and 42%, and N2O net production rate by 255 and 609%, respectively, compared to no REEs. Similarly, high doses of lanthanum (0.16 and 0.32 mmol kg−1 soil) increased CO2 net production rate by 47 and 39%, and N2O net production rate by 105 and 187%, respectively. Increased soil respiration from altered relative abundances of key soil microorganisms associated with soil N cycling and organic matter degradation and functional genes encoding enzymes involved in C and N metabolism, accelerated N mineralization. Elevated REEs levels substantially increased the relative abundances of functional genes related to cellulose, chitin, glucans, hemicellulose, lignin, and peptidoglycan degradation. REEs also influenced multiple functional genes associated with the N cycle. The abundance of genes responsible for organic N degradation and synthesis, such as asnB, gdh_K15371, glsA, and gs, increased with elevated cerium and lanthanum concentrations. Similarly, the abundances of denitrification genes, including narl, narJ, narZ, and nosZ, also rose with increasing amounts of cerium and lanthanum. However, the decrease in narB and nirB gene abundance with increasing REE concentrations was attributed to the reduction of nitrate to amino groups. Our findings highlight the influence of REEs on key soil microorganisms associated with soil N cycling and organic matter degradation and key functional genes in soil C and N metabolism, with implications for agriculture, environmental protection, and human health. Interaction of carbon and nitrogen functional genes in different rare earth nitrate treatments. [Display omitted] •Lanthanum and cerium enhance breakdown of polymers like cellulose and chitin.•Lanthanum and cerium boost polymer breakdown by raising the gene abundance.•Lanthanum and cerium enhance relative abundance of genes for denitrification.•Lanthanum and cerium enhance genes related to organic N degradation and synthesis.
ISSN:0301-4797
1095-8630
1095-8630
DOI:10.1016/j.jenvman.2024.123509