High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors
Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the d...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2025-02, Vol.350, p.122943, Article 122943 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122943 |
container_title | Carbohydrate polymers |
container_volume | 350 |
creator | Wei, Jinmei Liu, Chenglu Shi, Lin Liu, Yongpin Lu, Huidan |
description | Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors. |
doi_str_mv | 10.1016/j.carbpol.2024.122943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154257557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486172401169X</els_id><sourcerecordid>3154257557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCTwD5yCWL7ThOckKoKhSpEhc4W_4Yd7048WLHbffEX8fRLlxhLnN55p3RPAi9oWRLCRXv91ujkj7EsGWE8S1lbOTtM7ShQz82tOX8OdoQynkzCNpfoMuc96SWoOQlumhHwfuxZRv069bf75oDJBfTpGYD2MTZFrP4B8A2Fh2gmWF5jOkH3h1tivcQsFYZcJxxjtaXCa-HxKfjBMvuGLCBEEqIlaiReCph8a7MNTDOKuBHUEnVUJxhzjHlV-iFUyHD63O_Qt8_3Xy7vm3uvn7-cv3xrjGsF0szcmsGY7QbKVFDx5ggYKjjlmvQjAprnQCrRd-rgfMBQIOz1BExdoowMrZX6N0p95DizwJ5kZPP66lqhliybGnHWdd3Xf8fKBfdQAhf0e6EmhRzTuDkIflJpaOkRK6a5F6eNclVkzxpqnNvzyuKnsD-nfrjpQIfTgDUnzx4SDIbD1WP9QnMIm30_1jxGy7fqmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146580047</pqid></control><display><type>article</type><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</creator><creatorcontrib>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</creatorcontrib><description>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122943</identifier><identifier>PMID: 39647932</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylates - chemistry ; acrylic acid ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibacterial ; bentonite ; Bentonite - chemistry ; biocompatibility ; calcium ; carboxymethylcellulose ; Carboxymethylcellulose Sodium - chemistry ; Double network ; Elastic Modulus ; Electric Conductivity ; electronic equipment ; Escherichia coli - drug effects ; Humans ; hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; mechanical properties ; modulus of elasticity ; Multifunctional ; polymerization ; prices ; Printing, Three-Dimensional ; Staphylococcus aureus - drug effects ; sweat ; Sweat - chemistry ; Temperature ; Wearable Electronic Devices ; Wearable sensors</subject><ispartof>Carbohydrate polymers, 2025-02, Vol.350, p.122943, Article 122943</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014486172401169X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39647932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jinmei</creatorcontrib><creatorcontrib>Liu, Chenglu</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Liu, Yongpin</creatorcontrib><creatorcontrib>Lu, Huidan</creatorcontrib><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</description><subject>Acrylates - chemistry</subject><subject>acrylic acid</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial</subject><subject>bentonite</subject><subject>Bentonite - chemistry</subject><subject>biocompatibility</subject><subject>calcium</subject><subject>carboxymethylcellulose</subject><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Double network</subject><subject>Elastic Modulus</subject><subject>Electric Conductivity</subject><subject>electronic equipment</subject><subject>Escherichia coli - drug effects</subject><subject>Humans</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>mechanical properties</subject><subject>modulus of elasticity</subject><subject>Multifunctional</subject><subject>polymerization</subject><subject>prices</subject><subject>Printing, Three-Dimensional</subject><subject>Staphylococcus aureus - drug effects</subject><subject>sweat</subject><subject>Sweat - chemistry</subject><subject>Temperature</subject><subject>Wearable Electronic Devices</subject><subject>Wearable sensors</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotvCTwD5yCWL7ThOckKoKhSpEhc4W_4Yd7048WLHbffEX8fRLlxhLnN55p3RPAi9oWRLCRXv91ujkj7EsGWE8S1lbOTtM7ShQz82tOX8OdoQynkzCNpfoMuc96SWoOQlumhHwfuxZRv069bf75oDJBfTpGYD2MTZFrP4B8A2Fh2gmWF5jOkH3h1tivcQsFYZcJxxjtaXCa-HxKfjBMvuGLCBEEqIlaiReCph8a7MNTDOKuBHUEnVUJxhzjHlV-iFUyHD63O_Qt8_3Xy7vm3uvn7-cv3xrjGsF0szcmsGY7QbKVFDx5ggYKjjlmvQjAprnQCrRd-rgfMBQIOz1BExdoowMrZX6N0p95DizwJ5kZPP66lqhliybGnHWdd3Xf8fKBfdQAhf0e6EmhRzTuDkIflJpaOkRK6a5F6eNclVkzxpqnNvzyuKnsD-nfrjpQIfTgDUnzx4SDIbD1WP9QnMIm30_1jxGy7fqmU</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Wei, Jinmei</creator><creator>Liu, Chenglu</creator><creator>Shi, Lin</creator><creator>Liu, Yongpin</creator><creator>Lu, Huidan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20250215</creationdate><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><author>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acrylates - chemistry</topic><topic>acrylic acid</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial</topic><topic>bentonite</topic><topic>Bentonite - chemistry</topic><topic>biocompatibility</topic><topic>calcium</topic><topic>carboxymethylcellulose</topic><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Double network</topic><topic>Elastic Modulus</topic><topic>Electric Conductivity</topic><topic>electronic equipment</topic><topic>Escherichia coli - drug effects</topic><topic>Humans</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>mechanical properties</topic><topic>modulus of elasticity</topic><topic>Multifunctional</topic><topic>polymerization</topic><topic>prices</topic><topic>Printing, Three-Dimensional</topic><topic>Staphylococcus aureus - drug effects</topic><topic>sweat</topic><topic>Sweat - chemistry</topic><topic>Temperature</topic><topic>Wearable Electronic Devices</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jinmei</creatorcontrib><creatorcontrib>Liu, Chenglu</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Liu, Yongpin</creatorcontrib><creatorcontrib>Lu, Huidan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jinmei</au><au>Liu, Chenglu</au><au>Shi, Lin</au><au>Liu, Yongpin</au><au>Lu, Huidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2025-02-15</date><risdate>2025</risdate><volume>350</volume><spage>122943</spage><pages>122943-</pages><artnum>122943</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39647932</pmid><doi>10.1016/j.carbpol.2024.122943</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2025-02, Vol.350, p.122943, Article 122943 |
issn | 0144-8617 1879-1344 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154257557 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acrylates - chemistry acrylic acid Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibacterial bentonite Bentonite - chemistry biocompatibility calcium carboxymethylcellulose Carboxymethylcellulose Sodium - chemistry Double network Elastic Modulus Electric Conductivity electronic equipment Escherichia coli - drug effects Humans hydrogels Hydrogels - chemistry Hydrogels - pharmacology mechanical properties modulus of elasticity Multifunctional polymerization prices Printing, Three-Dimensional Staphylococcus aureus - drug effects sweat Sweat - chemistry Temperature Wearable Electronic Devices Wearable sensors |
title | High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20conductive%20double-network%20hydrogel%20base%20on%20sodium%20carboxymethyl%20cellulose%20for%20multifunctional%20wearable%20sensors&rft.jtitle=Carbohydrate%20polymers&rft.au=Wei,%20Jinmei&rft.date=2025-02-15&rft.volume=350&rft.spage=122943&rft.pages=122943-&rft.artnum=122943&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122943&rft_dat=%3Cproquest_cross%3E3154257557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146580047&rft_id=info:pmid/39647932&rft_els_id=S014486172401169X&rfr_iscdi=true |