High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors

Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2025-02, Vol.350, p.122943, Article 122943
Hauptverfasser: Wei, Jinmei, Liu, Chenglu, Shi, Lin, Liu, Yongpin, Lu, Huidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122943
container_title Carbohydrate polymers
container_volume 350
creator Wei, Jinmei
Liu, Chenglu
Shi, Lin
Liu, Yongpin
Lu, Huidan
description Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.
doi_str_mv 10.1016/j.carbpol.2024.122943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154257557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486172401169X</els_id><sourcerecordid>3154257557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCTwD5yCWL7ThOckKoKhSpEhc4W_4Yd7048WLHbffEX8fRLlxhLnN55p3RPAi9oWRLCRXv91ujkj7EsGWE8S1lbOTtM7ShQz82tOX8OdoQynkzCNpfoMuc96SWoOQlumhHwfuxZRv069bf75oDJBfTpGYD2MTZFrP4B8A2Fh2gmWF5jOkH3h1tivcQsFYZcJxxjtaXCa-HxKfjBMvuGLCBEEqIlaiReCph8a7MNTDOKuBHUEnVUJxhzjHlV-iFUyHD63O_Qt8_3Xy7vm3uvn7-cv3xrjGsF0szcmsGY7QbKVFDx5ggYKjjlmvQjAprnQCrRd-rgfMBQIOz1BExdoowMrZX6N0p95DizwJ5kZPP66lqhliybGnHWdd3Xf8fKBfdQAhf0e6EmhRzTuDkIflJpaOkRK6a5F6eNclVkzxpqnNvzyuKnsD-nfrjpQIfTgDUnzx4SDIbD1WP9QnMIm30_1jxGy7fqmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146580047</pqid></control><display><type>article</type><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</creator><creatorcontrib>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</creatorcontrib><description>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122943</identifier><identifier>PMID: 39647932</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylates - chemistry ; acrylic acid ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibacterial ; bentonite ; Bentonite - chemistry ; biocompatibility ; calcium ; carboxymethylcellulose ; Carboxymethylcellulose Sodium - chemistry ; Double network ; Elastic Modulus ; Electric Conductivity ; electronic equipment ; Escherichia coli - drug effects ; Humans ; hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; mechanical properties ; modulus of elasticity ; Multifunctional ; polymerization ; prices ; Printing, Three-Dimensional ; Staphylococcus aureus - drug effects ; sweat ; Sweat - chemistry ; Temperature ; Wearable Electronic Devices ; Wearable sensors</subject><ispartof>Carbohydrate polymers, 2025-02, Vol.350, p.122943, Article 122943</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014486172401169X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39647932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jinmei</creatorcontrib><creatorcontrib>Liu, Chenglu</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Liu, Yongpin</creatorcontrib><creatorcontrib>Lu, Huidan</creatorcontrib><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</description><subject>Acrylates - chemistry</subject><subject>acrylic acid</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial</subject><subject>bentonite</subject><subject>Bentonite - chemistry</subject><subject>biocompatibility</subject><subject>calcium</subject><subject>carboxymethylcellulose</subject><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Double network</subject><subject>Elastic Modulus</subject><subject>Electric Conductivity</subject><subject>electronic equipment</subject><subject>Escherichia coli - drug effects</subject><subject>Humans</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>mechanical properties</subject><subject>modulus of elasticity</subject><subject>Multifunctional</subject><subject>polymerization</subject><subject>prices</subject><subject>Printing, Three-Dimensional</subject><subject>Staphylococcus aureus - drug effects</subject><subject>sweat</subject><subject>Sweat - chemistry</subject><subject>Temperature</subject><subject>Wearable Electronic Devices</subject><subject>Wearable sensors</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotvCTwD5yCWL7ThOckKoKhSpEhc4W_4Yd7048WLHbffEX8fRLlxhLnN55p3RPAi9oWRLCRXv91ujkj7EsGWE8S1lbOTtM7ShQz82tOX8OdoQynkzCNpfoMuc96SWoOQlumhHwfuxZRv069bf75oDJBfTpGYD2MTZFrP4B8A2Fh2gmWF5jOkH3h1tivcQsFYZcJxxjtaXCa-HxKfjBMvuGLCBEEqIlaiReCph8a7MNTDOKuBHUEnVUJxhzjHlV-iFUyHD63O_Qt8_3Xy7vm3uvn7-cv3xrjGsF0szcmsGY7QbKVFDx5ggYKjjlmvQjAprnQCrRd-rgfMBQIOz1BExdoowMrZX6N0p95DizwJ5kZPP66lqhliybGnHWdd3Xf8fKBfdQAhf0e6EmhRzTuDkIflJpaOkRK6a5F6eNclVkzxpqnNvzyuKnsD-nfrjpQIfTgDUnzx4SDIbD1WP9QnMIm30_1jxGy7fqmU</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Wei, Jinmei</creator><creator>Liu, Chenglu</creator><creator>Shi, Lin</creator><creator>Liu, Yongpin</creator><creator>Lu, Huidan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20250215</creationdate><title>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</title><author>Wei, Jinmei ; Liu, Chenglu ; Shi, Lin ; Liu, Yongpin ; Lu, Huidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-94dc8ccbf910a852260ec1f4d4beb216ddf6edb677a8448eebefd1f0695a02093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acrylates - chemistry</topic><topic>acrylic acid</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial</topic><topic>bentonite</topic><topic>Bentonite - chemistry</topic><topic>biocompatibility</topic><topic>calcium</topic><topic>carboxymethylcellulose</topic><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Double network</topic><topic>Elastic Modulus</topic><topic>Electric Conductivity</topic><topic>electronic equipment</topic><topic>Escherichia coli - drug effects</topic><topic>Humans</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>mechanical properties</topic><topic>modulus of elasticity</topic><topic>Multifunctional</topic><topic>polymerization</topic><topic>prices</topic><topic>Printing, Three-Dimensional</topic><topic>Staphylococcus aureus - drug effects</topic><topic>sweat</topic><topic>Sweat - chemistry</topic><topic>Temperature</topic><topic>Wearable Electronic Devices</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jinmei</creatorcontrib><creatorcontrib>Liu, Chenglu</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Liu, Yongpin</creatorcontrib><creatorcontrib>Lu, Huidan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jinmei</au><au>Liu, Chenglu</au><au>Shi, Lin</au><au>Liu, Yongpin</au><au>Lu, Huidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2025-02-15</date><risdate>2025</risdate><volume>350</volume><spage>122943</spage><pages>122943-</pages><artnum>122943</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39647932</pmid><doi>10.1016/j.carbpol.2024.122943</doi></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2025-02, Vol.350, p.122943, Article 122943
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_proquest_miscellaneous_3154257557
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acrylates - chemistry
acrylic acid
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibacterial
bentonite
Bentonite - chemistry
biocompatibility
calcium
carboxymethylcellulose
Carboxymethylcellulose Sodium - chemistry
Double network
Elastic Modulus
Electric Conductivity
electronic equipment
Escherichia coli - drug effects
Humans
hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
mechanical properties
modulus of elasticity
Multifunctional
polymerization
prices
Printing, Three-Dimensional
Staphylococcus aureus - drug effects
sweat
Sweat - chemistry
Temperature
Wearable Electronic Devices
Wearable sensors
title High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20conductive%20double-network%20hydrogel%20base%20on%20sodium%20carboxymethyl%20cellulose%20for%20multifunctional%20wearable%20sensors&rft.jtitle=Carbohydrate%20polymers&rft.au=Wei,%20Jinmei&rft.date=2025-02-15&rft.volume=350&rft.spage=122943&rft.pages=122943-&rft.artnum=122943&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122943&rft_dat=%3Cproquest_cross%3E3154257557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146580047&rft_id=info:pmid/39647932&rft_els_id=S014486172401169X&rfr_iscdi=true