Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater
Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydro...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-12, Vol.16 (50), p.69199-69209 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69209 |
---|---|
container_issue | 50 |
container_start_page | 69199 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Li, Mengyao Min, Jie Huang, Yixuan Meng, Linghui Dong, Zekun Wang, Shuangyue Wan, Tao Guan, Peiyuan Hu, Long Zhou, Yingze Han, Zhaojun Ni, Bingjie Chu, Dewei |
description | Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production. |
doi_str_mv | 10.1021/acsami.4c13270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154253560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146608535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-d65b5e5dfe3c6d014d8b9b8ecaa724bf1f6e3feda093d053362e4900d95e97b3</originalsourceid><addsrcrecordid>eNqNkT1PwzAYhC0EEqWwMntESCn-bjKiqlCkIlDTPXLs15AqiUucUJD48aRNxcx0Nzx3wx1C15RMKGH0Tpugq2IiDOVsSk7QiCZCRDGT7PTPC3GOLkLYEKI4I3KEftKtNhDNfO2KGiqoW6xri4sap0Xb4RXYzrSFr7F3-LXFu6J9x3QdPfuUYecbPP8ysN0DusSLb9v4N6jx_NOX3SG1Aj3ED4VVV-oWLE5B73rTXKIzp8sAV0cdo_XDfD1bRMuXx6fZ_TLSNFZtZJXMJUjrgBtlCRU2zpM8BqP1lIncUaeAO7CaJNwSybliIBJCbCIhmeZ8jG6G2m3jPzoIbVYVwUBZ6hp8FzJOpWCSS0X-gQqlSNzDPXo7oP3u2cZ3TT9ByCjJ9mdkwxnZ8Qz-C0gjfws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146608535</pqid></control><display><type>article</type><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><source>ACS Publications</source><creator>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</creator><creatorcontrib>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</creatorcontrib><description>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13270</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>catalysts ; catalytic activity ; clean energy ; durability ; electrodes ; Energy, Environmental, and Catalysis Applications ; graphene ; hydrogen ; hydrogen production ; nanoparticles ; nanosheets ; seawater</subject><ispartof>ACS applied materials & interfaces, 2024-12, Vol.16 (50), p.69199-69209</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9345-8624 ; 0000-0003-2441-864X ; 0000-0002-2437-319X ; 0000-0003-2379-2058 ; 0000-0003-4581-0560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13270$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13270$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Huang, Yixuan</creatorcontrib><creatorcontrib>Meng, Linghui</creatorcontrib><creatorcontrib>Dong, Zekun</creatorcontrib><creatorcontrib>Wang, Shuangyue</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Guan, Peiyuan</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Zhou, Yingze</creatorcontrib><creatorcontrib>Han, Zhaojun</creatorcontrib><creatorcontrib>Ni, Bingjie</creatorcontrib><creatorcontrib>Chu, Dewei</creatorcontrib><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</description><subject>catalysts</subject><subject>catalytic activity</subject><subject>clean energy</subject><subject>durability</subject><subject>electrodes</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>graphene</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>nanoparticles</subject><subject>nanosheets</subject><subject>seawater</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAYhC0EEqWwMntESCn-bjKiqlCkIlDTPXLs15AqiUucUJD48aRNxcx0Nzx3wx1C15RMKGH0Tpugq2IiDOVsSk7QiCZCRDGT7PTPC3GOLkLYEKI4I3KEftKtNhDNfO2KGiqoW6xri4sap0Xb4RXYzrSFr7F3-LXFu6J9x3QdPfuUYecbPP8ysN0DusSLb9v4N6jx_NOX3SG1Aj3ED4VVV-oWLE5B73rTXKIzp8sAV0cdo_XDfD1bRMuXx6fZ_TLSNFZtZJXMJUjrgBtlCRU2zpM8BqP1lIncUaeAO7CaJNwSybliIBJCbCIhmeZ8jG6G2m3jPzoIbVYVwUBZ6hp8FzJOpWCSS0X-gQqlSNzDPXo7oP3u2cZ3TT9ByCjJ9mdkwxnZ8Qz-C0gjfws</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Li, Mengyao</creator><creator>Min, Jie</creator><creator>Huang, Yixuan</creator><creator>Meng, Linghui</creator><creator>Dong, Zekun</creator><creator>Wang, Shuangyue</creator><creator>Wan, Tao</creator><creator>Guan, Peiyuan</creator><creator>Hu, Long</creator><creator>Zhou, Yingze</creator><creator>Han, Zhaojun</creator><creator>Ni, Bingjie</creator><creator>Chu, Dewei</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9345-8624</orcidid><orcidid>https://orcid.org/0000-0003-2441-864X</orcidid><orcidid>https://orcid.org/0000-0002-2437-319X</orcidid><orcidid>https://orcid.org/0000-0003-2379-2058</orcidid><orcidid>https://orcid.org/0000-0003-4581-0560</orcidid></search><sort><creationdate>20241218</creationdate><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><author>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-d65b5e5dfe3c6d014d8b9b8ecaa724bf1f6e3feda093d053362e4900d95e97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>catalysts</topic><topic>catalytic activity</topic><topic>clean energy</topic><topic>durability</topic><topic>electrodes</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>graphene</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>nanoparticles</topic><topic>nanosheets</topic><topic>seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Huang, Yixuan</creatorcontrib><creatorcontrib>Meng, Linghui</creatorcontrib><creatorcontrib>Dong, Zekun</creatorcontrib><creatorcontrib>Wang, Shuangyue</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Guan, Peiyuan</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Zhou, Yingze</creatorcontrib><creatorcontrib>Han, Zhaojun</creatorcontrib><creatorcontrib>Ni, Bingjie</creatorcontrib><creatorcontrib>Chu, Dewei</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengyao</au><au>Min, Jie</au><au>Huang, Yixuan</au><au>Meng, Linghui</au><au>Dong, Zekun</au><au>Wang, Shuangyue</au><au>Wan, Tao</au><au>Guan, Peiyuan</au><au>Hu, Long</au><au>Zhou, Yingze</au><au>Han, Zhaojun</au><au>Ni, Bingjie</au><au>Chu, Dewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>50</issue><spage>69199</spage><epage>69209</epage><pages>69199-69209</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c13270</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9345-8624</orcidid><orcidid>https://orcid.org/0000-0003-2441-864X</orcidid><orcidid>https://orcid.org/0000-0002-2437-319X</orcidid><orcidid>https://orcid.org/0000-0003-2379-2058</orcidid><orcidid>https://orcid.org/0000-0003-4581-0560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-12, Vol.16 (50), p.69199-69209 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154253560 |
source | ACS Publications |
subjects | catalysts catalytic activity clean energy durability electrodes Energy, Environmental, and Catalysis Applications graphene hydrogen hydrogen production nanoparticles nanosheets seawater |
title | Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Confinement%20and%20in%20Situ%20Reduction%20of%20Pt%20with%201T-MoS2%20for%20Exceptional%20Hydrogen%20Evolution%20Reaction%20in%20Simulated%20Seawater&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Mengyao&rft.date=2024-12-18&rft.volume=16&rft.issue=50&rft.spage=69199&rft.epage=69209&rft.pages=69199-69209&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13270&rft_dat=%3Cproquest_acs_j%3E3146608535%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146608535&rft_id=info:pmid/&rfr_iscdi=true |