Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater

Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-12, Vol.16 (50), p.69199-69209
Hauptverfasser: Li, Mengyao, Min, Jie, Huang, Yixuan, Meng, Linghui, Dong, Zekun, Wang, Shuangyue, Wan, Tao, Guan, Peiyuan, Hu, Long, Zhou, Yingze, Han, Zhaojun, Ni, Bingjie, Chu, Dewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69209
container_issue 50
container_start_page 69199
container_title ACS applied materials & interfaces
container_volume 16
creator Li, Mengyao
Min, Jie
Huang, Yixuan
Meng, Linghui
Dong, Zekun
Wang, Shuangyue
Wan, Tao
Guan, Peiyuan
Hu, Long
Zhou, Yingze
Han, Zhaojun
Ni, Bingjie
Chu, Dewei
description Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.
doi_str_mv 10.1021/acsami.4c13270
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154253560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146608535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-d65b5e5dfe3c6d014d8b9b8ecaa724bf1f6e3feda093d053362e4900d95e97b3</originalsourceid><addsrcrecordid>eNqNkT1PwzAYhC0EEqWwMntESCn-bjKiqlCkIlDTPXLs15AqiUucUJD48aRNxcx0Nzx3wx1C15RMKGH0Tpugq2IiDOVsSk7QiCZCRDGT7PTPC3GOLkLYEKI4I3KEftKtNhDNfO2KGiqoW6xri4sap0Xb4RXYzrSFr7F3-LXFu6J9x3QdPfuUYecbPP8ysN0DusSLb9v4N6jx_NOX3SG1Aj3ED4VVV-oWLE5B73rTXKIzp8sAV0cdo_XDfD1bRMuXx6fZ_TLSNFZtZJXMJUjrgBtlCRU2zpM8BqP1lIncUaeAO7CaJNwSybliIBJCbCIhmeZ8jG6G2m3jPzoIbVYVwUBZ6hp8FzJOpWCSS0X-gQqlSNzDPXo7oP3u2cZ3TT9ByCjJ9mdkwxnZ8Qz-C0gjfws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146608535</pqid></control><display><type>article</type><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><source>ACS Publications</source><creator>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</creator><creatorcontrib>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</creatorcontrib><description>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13270</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>catalysts ; catalytic activity ; clean energy ; durability ; electrodes ; Energy, Environmental, and Catalysis Applications ; graphene ; hydrogen ; hydrogen production ; nanoparticles ; nanosheets ; seawater</subject><ispartof>ACS applied materials &amp; interfaces, 2024-12, Vol.16 (50), p.69199-69209</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9345-8624 ; 0000-0003-2441-864X ; 0000-0002-2437-319X ; 0000-0003-2379-2058 ; 0000-0003-4581-0560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13270$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13270$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Huang, Yixuan</creatorcontrib><creatorcontrib>Meng, Linghui</creatorcontrib><creatorcontrib>Dong, Zekun</creatorcontrib><creatorcontrib>Wang, Shuangyue</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Guan, Peiyuan</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Zhou, Yingze</creatorcontrib><creatorcontrib>Han, Zhaojun</creatorcontrib><creatorcontrib>Ni, Bingjie</creatorcontrib><creatorcontrib>Chu, Dewei</creatorcontrib><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</description><subject>catalysts</subject><subject>catalytic activity</subject><subject>clean energy</subject><subject>durability</subject><subject>electrodes</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>graphene</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>nanoparticles</subject><subject>nanosheets</subject><subject>seawater</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAYhC0EEqWwMntESCn-bjKiqlCkIlDTPXLs15AqiUucUJD48aRNxcx0Nzx3wx1C15RMKGH0Tpugq2IiDOVsSk7QiCZCRDGT7PTPC3GOLkLYEKI4I3KEftKtNhDNfO2KGiqoW6xri4sap0Xb4RXYzrSFr7F3-LXFu6J9x3QdPfuUYecbPP8ysN0DusSLb9v4N6jx_NOX3SG1Aj3ED4VVV-oWLE5B73rTXKIzp8sAV0cdo_XDfD1bRMuXx6fZ_TLSNFZtZJXMJUjrgBtlCRU2zpM8BqP1lIncUaeAO7CaJNwSybliIBJCbCIhmeZ8jG6G2m3jPzoIbVYVwUBZ6hp8FzJOpWCSS0X-gQqlSNzDPXo7oP3u2cZ3TT9ByCjJ9mdkwxnZ8Qz-C0gjfws</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Li, Mengyao</creator><creator>Min, Jie</creator><creator>Huang, Yixuan</creator><creator>Meng, Linghui</creator><creator>Dong, Zekun</creator><creator>Wang, Shuangyue</creator><creator>Wan, Tao</creator><creator>Guan, Peiyuan</creator><creator>Hu, Long</creator><creator>Zhou, Yingze</creator><creator>Han, Zhaojun</creator><creator>Ni, Bingjie</creator><creator>Chu, Dewei</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9345-8624</orcidid><orcidid>https://orcid.org/0000-0003-2441-864X</orcidid><orcidid>https://orcid.org/0000-0002-2437-319X</orcidid><orcidid>https://orcid.org/0000-0003-2379-2058</orcidid><orcidid>https://orcid.org/0000-0003-4581-0560</orcidid></search><sort><creationdate>20241218</creationdate><title>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</title><author>Li, Mengyao ; Min, Jie ; Huang, Yixuan ; Meng, Linghui ; Dong, Zekun ; Wang, Shuangyue ; Wan, Tao ; Guan, Peiyuan ; Hu, Long ; Zhou, Yingze ; Han, Zhaojun ; Ni, Bingjie ; Chu, Dewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-d65b5e5dfe3c6d014d8b9b8ecaa724bf1f6e3feda093d053362e4900d95e97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>catalysts</topic><topic>catalytic activity</topic><topic>clean energy</topic><topic>durability</topic><topic>electrodes</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>graphene</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>nanoparticles</topic><topic>nanosheets</topic><topic>seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Huang, Yixuan</creatorcontrib><creatorcontrib>Meng, Linghui</creatorcontrib><creatorcontrib>Dong, Zekun</creatorcontrib><creatorcontrib>Wang, Shuangyue</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Guan, Peiyuan</creatorcontrib><creatorcontrib>Hu, Long</creatorcontrib><creatorcontrib>Zhou, Yingze</creatorcontrib><creatorcontrib>Han, Zhaojun</creatorcontrib><creatorcontrib>Ni, Bingjie</creatorcontrib><creatorcontrib>Chu, Dewei</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengyao</au><au>Min, Jie</au><au>Huang, Yixuan</au><au>Meng, Linghui</au><au>Dong, Zekun</au><au>Wang, Shuangyue</au><au>Wan, Tao</au><au>Guan, Peiyuan</au><au>Hu, Long</au><au>Zhou, Yingze</au><au>Han, Zhaojun</au><au>Ni, Bingjie</au><au>Chu, Dewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>16</volume><issue>50</issue><spage>69199</spage><epage>69209</epage><pages>69199-69209</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c13270</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9345-8624</orcidid><orcidid>https://orcid.org/0000-0003-2441-864X</orcidid><orcidid>https://orcid.org/0000-0002-2437-319X</orcidid><orcidid>https://orcid.org/0000-0003-2379-2058</orcidid><orcidid>https://orcid.org/0000-0003-4581-0560</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-12, Vol.16 (50), p.69199-69209
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3154253560
source ACS Publications
subjects catalysts
catalytic activity
clean energy
durability
electrodes
Energy, Environmental, and Catalysis Applications
graphene
hydrogen
hydrogen production
nanoparticles
nanosheets
seawater
title Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Confinement%20and%20in%20Situ%20Reduction%20of%20Pt%20with%201T-MoS2%20for%20Exceptional%20Hydrogen%20Evolution%20Reaction%20in%20Simulated%20Seawater&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Mengyao&rft.date=2024-12-18&rft.volume=16&rft.issue=50&rft.spage=69199&rft.epage=69209&rft.pages=69199-69209&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13270&rft_dat=%3Cproquest_acs_j%3E3146608535%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146608535&rft_id=info:pmid/&rfr_iscdi=true