Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries

As a highly promising electrode material for future batteries, silicon (Si) is considered an alternative anode, which has garnered significant attention due to its exceptional theoretical gravimetric capacity, low working potential, and abundant natural resources. Nonetheless, the real-world usage o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2024-12, Vol.63 (49), p.21125-21145
Hauptverfasser: Zhang, Hongyang, Su, Yujing, Chen, Yingdong, Liu, Fangrui, Zhu, Ruojia, Zhao, Pengtao, Wei, Lianjin, Li, Wenqi, Chen, Tao, Fu, Jiajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21145
container_issue 49
container_start_page 21125
container_title Industrial & engineering chemistry research
container_volume 63
creator Zhang, Hongyang
Su, Yujing
Chen, Yingdong
Liu, Fangrui
Zhu, Ruojia
Zhao, Pengtao
Wei, Lianjin
Li, Wenqi
Chen, Tao
Fu, Jiajun
description As a highly promising electrode material for future batteries, silicon (Si) is considered an alternative anode, which has garnered significant attention due to its exceptional theoretical gravimetric capacity, low working potential, and abundant natural resources. Nonetheless, the real-world usage of silicon anodes is hampered by huge challenges such as drastic volumetric expansion, poor structural interfacial stability, and unstable solid electrolyte interface. To tackle these challenges, significant endeavors have been increasingly channeled into the creation of novel binders. Adhesive, as an element of the silicon electrode, is crucial for preserving structural stability. Therefore, designing multifunctional binder stress dissipation networks is one of the important strategies to overcome the challenges of commercializing silicon anodes. This paper reviews recent advances in silicon anode binders and explores the structural-functional properties of these binders. Binders can be classified based on their structure into linear, branched, three-dimensional networks, and multiconjugated. The functional properties of different structural design strategies are discussed in depth, focusing on mechanical and electrical conductivity. Special attention is given to the design strategy of multifunctional stress-release binder networks. Finally, the article addresses the challenges and future directions of silicon anode binder research and offers suggestions for the continued advancement of high-performance silicon anode lithium-ion batteries.
doi_str_mv 10.1021/acs.iecr.4c02837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154253451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154253451</sourcerecordid><originalsourceid>FETCH-LOGICAL-a196t-cf1b2410dad14c19eee7f1ba16d81d4211950cad81e8cc3680058946c8c2ccd73</originalsourceid><addsrcrecordid>eNp1kM1OAjEUhRujiYjuXXbpwsF2poWyBCJKQqIRXU_qnTtSMrRj20lk5zv4hj6JJbB1df_Oucn5CLnmbMBZzu80hIFB8AMBLFfF6IT0uMxZJpmQp6THlFKZVEqek4sQNowxKYXoka-FDeZjHQM1Njoa10hX0XcQO4-_3z_P3rXo4y61885CNM7SF2z0vglr0wbqaroyjQFns6kOWNGJdRXSqbEV-kBr5-nSxLXpttkimac6RvQGwyU5q3UT8OpY--Rtfv86e8yWTw-L2WSZaT4exgxq_p4LzipdcQF8jIijtNJ8WCleiZzzsWSg04AKoBiqFEyNxRAU5ADVqOiTm8Pf1rvPDkMstyYANo226LpQFlyKXBZC8iRlByl4F4LHumy92Wq_Kzkr95DLBLncQy6PkJPl9mDZXzau8zZl-V_-B8NPhMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154253451</pqid></control><display><type>article</type><title>Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Zhang, Hongyang ; Su, Yujing ; Chen, Yingdong ; Liu, Fangrui ; Zhu, Ruojia ; Zhao, Pengtao ; Wei, Lianjin ; Li, Wenqi ; Chen, Tao ; Fu, Jiajun</creator><creatorcontrib>Zhang, Hongyang ; Su, Yujing ; Chen, Yingdong ; Liu, Fangrui ; Zhu, Ruojia ; Zhao, Pengtao ; Wei, Lianjin ; Li, Wenqi ; Chen, Tao ; Fu, Jiajun</creatorcontrib><description>As a highly promising electrode material for future batteries, silicon (Si) is considered an alternative anode, which has garnered significant attention due to its exceptional theoretical gravimetric capacity, low working potential, and abundant natural resources. Nonetheless, the real-world usage of silicon anodes is hampered by huge challenges such as drastic volumetric expansion, poor structural interfacial stability, and unstable solid electrolyte interface. To tackle these challenges, significant endeavors have been increasingly channeled into the creation of novel binders. Adhesive, as an element of the silicon electrode, is crucial for preserving structural stability. Therefore, designing multifunctional binder stress dissipation networks is one of the important strategies to overcome the challenges of commercializing silicon anodes. This paper reviews recent advances in silicon anode binders and explores the structural-functional properties of these binders. Binders can be classified based on their structure into linear, branched, three-dimensional networks, and multiconjugated. The functional properties of different structural design strategies are discussed in depth, focusing on mechanical and electrical conductivity. Special attention is given to the design strategy of multifunctional stress-release binder networks. Finally, the article addresses the challenges and future directions of silicon anode binder research and offers suggestions for the continued advancement of high-performance silicon anode lithium-ion batteries.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.4c02837</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>anodes ; chemistry ; electrical conductivity ; electrolytes ; silicon</subject><ispartof>Industrial &amp; engineering chemistry research, 2024-12, Vol.63 (49), p.21125-21145</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a196t-cf1b2410dad14c19eee7f1ba16d81d4211950cad81e8cc3680058946c8c2ccd73</cites><orcidid>0009-0002-7494-0065 ; 0000-0003-2536-4145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.4c02837$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.4c02837$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Hongyang</creatorcontrib><creatorcontrib>Su, Yujing</creatorcontrib><creatorcontrib>Chen, Yingdong</creatorcontrib><creatorcontrib>Liu, Fangrui</creatorcontrib><creatorcontrib>Zhu, Ruojia</creatorcontrib><creatorcontrib>Zhao, Pengtao</creatorcontrib><creatorcontrib>Wei, Lianjin</creatorcontrib><creatorcontrib>Li, Wenqi</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Fu, Jiajun</creatorcontrib><title>Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>As a highly promising electrode material for future batteries, silicon (Si) is considered an alternative anode, which has garnered significant attention due to its exceptional theoretical gravimetric capacity, low working potential, and abundant natural resources. Nonetheless, the real-world usage of silicon anodes is hampered by huge challenges such as drastic volumetric expansion, poor structural interfacial stability, and unstable solid electrolyte interface. To tackle these challenges, significant endeavors have been increasingly channeled into the creation of novel binders. Adhesive, as an element of the silicon electrode, is crucial for preserving structural stability. Therefore, designing multifunctional binder stress dissipation networks is one of the important strategies to overcome the challenges of commercializing silicon anodes. This paper reviews recent advances in silicon anode binders and explores the structural-functional properties of these binders. Binders can be classified based on their structure into linear, branched, three-dimensional networks, and multiconjugated. The functional properties of different structural design strategies are discussed in depth, focusing on mechanical and electrical conductivity. Special attention is given to the design strategy of multifunctional stress-release binder networks. Finally, the article addresses the challenges and future directions of silicon anode binder research and offers suggestions for the continued advancement of high-performance silicon anode lithium-ion batteries.</description><subject>anodes</subject><subject>chemistry</subject><subject>electrical conductivity</subject><subject>electrolytes</subject><subject>silicon</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAjEUhRujiYjuXXbpwsF2poWyBCJKQqIRXU_qnTtSMrRj20lk5zv4hj6JJbB1df_Oucn5CLnmbMBZzu80hIFB8AMBLFfF6IT0uMxZJpmQp6THlFKZVEqek4sQNowxKYXoka-FDeZjHQM1Njoa10hX0XcQO4-_3z_P3rXo4y61885CNM7SF2z0vglr0wbqaroyjQFns6kOWNGJdRXSqbEV-kBr5-nSxLXpttkimac6RvQGwyU5q3UT8OpY--Rtfv86e8yWTw-L2WSZaT4exgxq_p4LzipdcQF8jIijtNJ8WCleiZzzsWSg04AKoBiqFEyNxRAU5ADVqOiTm8Pf1rvPDkMstyYANo226LpQFlyKXBZC8iRlByl4F4LHumy92Wq_Kzkr95DLBLncQy6PkJPl9mDZXzau8zZl-V_-B8NPhMM</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Zhang, Hongyang</creator><creator>Su, Yujing</creator><creator>Chen, Yingdong</creator><creator>Liu, Fangrui</creator><creator>Zhu, Ruojia</creator><creator>Zhao, Pengtao</creator><creator>Wei, Lianjin</creator><creator>Li, Wenqi</creator><creator>Chen, Tao</creator><creator>Fu, Jiajun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0002-7494-0065</orcidid><orcidid>https://orcid.org/0000-0003-2536-4145</orcidid></search><sort><creationdate>20241211</creationdate><title>Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries</title><author>Zhang, Hongyang ; Su, Yujing ; Chen, Yingdong ; Liu, Fangrui ; Zhu, Ruojia ; Zhao, Pengtao ; Wei, Lianjin ; Li, Wenqi ; Chen, Tao ; Fu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a196t-cf1b2410dad14c19eee7f1ba16d81d4211950cad81e8cc3680058946c8c2ccd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>chemistry</topic><topic>electrical conductivity</topic><topic>electrolytes</topic><topic>silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongyang</creatorcontrib><creatorcontrib>Su, Yujing</creatorcontrib><creatorcontrib>Chen, Yingdong</creatorcontrib><creatorcontrib>Liu, Fangrui</creatorcontrib><creatorcontrib>Zhu, Ruojia</creatorcontrib><creatorcontrib>Zhao, Pengtao</creatorcontrib><creatorcontrib>Wei, Lianjin</creatorcontrib><creatorcontrib>Li, Wenqi</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Fu, Jiajun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongyang</au><au>Su, Yujing</au><au>Chen, Yingdong</au><au>Liu, Fangrui</au><au>Zhu, Ruojia</au><au>Zhao, Pengtao</au><au>Wei, Lianjin</au><au>Li, Wenqi</au><au>Chen, Tao</au><au>Fu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>63</volume><issue>49</issue><spage>21125</spage><epage>21145</epage><pages>21125-21145</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>As a highly promising electrode material for future batteries, silicon (Si) is considered an alternative anode, which has garnered significant attention due to its exceptional theoretical gravimetric capacity, low working potential, and abundant natural resources. Nonetheless, the real-world usage of silicon anodes is hampered by huge challenges such as drastic volumetric expansion, poor structural interfacial stability, and unstable solid electrolyte interface. To tackle these challenges, significant endeavors have been increasingly channeled into the creation of novel binders. Adhesive, as an element of the silicon electrode, is crucial for preserving structural stability. Therefore, designing multifunctional binder stress dissipation networks is one of the important strategies to overcome the challenges of commercializing silicon anodes. This paper reviews recent advances in silicon anode binders and explores the structural-functional properties of these binders. Binders can be classified based on their structure into linear, branched, three-dimensional networks, and multiconjugated. The functional properties of different structural design strategies are discussed in depth, focusing on mechanical and electrical conductivity. Special attention is given to the design strategy of multifunctional stress-release binder networks. Finally, the article addresses the challenges and future directions of silicon anode binder research and offers suggestions for the continued advancement of high-performance silicon anode lithium-ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.4c02837</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0002-7494-0065</orcidid><orcidid>https://orcid.org/0000-0003-2536-4145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2024-12, Vol.63 (49), p.21125-21145
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_proquest_miscellaneous_3154253451
source ACS Publications
subjects anodes
chemistry
electrical conductivity
electrolytes
silicon
title Insights into the Structure–Property–Function Relationships of Silicon-Based Anode Binders for Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Structure%E2%80%93Property%E2%80%93Function%20Relationships%20of%20Silicon-Based%20Anode%20Binders%20for%20Lithium-Ion%20Batteries&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zhang,%20Hongyang&rft.date=2024-12-11&rft.volume=63&rft.issue=49&rft.spage=21125&rft.epage=21145&rft.pages=21125-21145&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.4c02837&rft_dat=%3Cproquest_cross%3E3154253451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154253451&rft_id=info:pmid/&rfr_iscdi=true