Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability

Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-12, Vol.58 (48), p.21327-21338
Hauptverfasser: Wang, Qi, Liu, Weitao, Zhou, Qixing, Wang, Shuting, Mo, Fan, Wu, Xinyi, Wang, Jianling, Shi, Ruiying, Li, Xiang, Yin, Chuan, Sun, Yuebing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21338
container_issue 48
container_start_page 21327
container_title Environmental science & technology
container_volume 58
creator Wang, Qi
Liu, Weitao
Zhou, Qixing
Wang, Shuting
Mo, Fan
Wu, Xinyi
Wang, Jianling
Shi, Ruiying
Li, Xiang
Yin, Chuan
Sun, Yuebing
description Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.
doi_str_mv 10.1021/acs.est.4c07189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154252003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130827574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWh9rdxJwI8jUm2TSzLiTWh-gKD7A3ZDJZDQyTWqSCv33Zmh1IQiu8vruubnnILRPYEiAkhOpwlCHOMwVCFKUa2hAOIWMF5ysowEAYVnJRi9baDuEdwCgDIpNtMVKPiKsoAO0uO-kjca-4ol9k1bpgB-d6fCDDibE_gJHh2-N8m7WyRCNCqd48mka3T-13k3xWPraWTyZmhCMswFL2-DzdHDdp27wnX-V1ih8K2PUHj9GWZvOxMUu2mhlF_Teat1BzxeTp_FVdnN3eT0-u8kkFUXMOCGalYJBmzZKaZmXwJUEDmUO0GrNZatImauaFnUraqYZEW0DUuTNiNWE7aCjpe7Mu495MqtKH1W6S3NrNw8VIzynyTRg_0CTfVRwkSf08Bf67ubepkESlTNWUlKIRJ0sqWRfCF631cybqfSLikDVB1ilAKu-ehVgqjhY6c7rqW5--O_EEnC8BPrKn55_yX0BK9qmww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143392187</pqid></control><display><type>article</type><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</creator><creatorcontrib>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</creatorcontrib><description>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c07189</identifier><identifier>PMID: 39561382</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthropogenic factors ; Biodegradation ; Biodiversity ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sources ; Comparative analysis ; Cyclotron resonance ; Dissolved organic matter ; ecological balance ; Ecosystem stability ; ecosystems ; Emissions ; environmental science ; Fermentation ; Fourier transforms ; Mass spectrometry ; Mass spectroscopy ; Microorganisms ; Microplastics ; Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants ; Organic soils ; planting ; Plastic pollution ; Radishes ; Raphanus ; Raphanus sativus ; Rhizosphere ; soil ; Soil - chemistry ; Soil analysis ; Soil degradation ; Soil Microbiology ; Soil microorganisms ; Soil Pollutants ; Soil pollution ; Soil resistance ; Soils ; Systems stability</subject><ispartof>Environmental science &amp; technology, 2024-12, Vol.58 (48), p.21327-21338</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 3, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</cites><orcidid>0000-0003-4864-1715 ; 0000-0003-1352-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c07189$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c07189$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39561382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zhou, Qixing</creatorcontrib><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Wu, Xinyi</creatorcontrib><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yin, Chuan</creatorcontrib><creatorcontrib>Sun, Yuebing</creatorcontrib><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</description><subject>Anthropogenic factors</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sources</subject><subject>Comparative analysis</subject><subject>Cyclotron resonance</subject><subject>Dissolved organic matter</subject><subject>ecological balance</subject><subject>Ecosystem stability</subject><subject>ecosystems</subject><subject>Emissions</subject><subject>environmental science</subject><subject>Fermentation</subject><subject>Fourier transforms</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microorganisms</subject><subject>Microplastics</subject><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><subject>Organic soils</subject><subject>planting</subject><subject>Plastic pollution</subject><subject>Radishes</subject><subject>Raphanus</subject><subject>Raphanus sativus</subject><subject>Rhizosphere</subject><subject>soil</subject><subject>Soil - chemistry</subject><subject>Soil analysis</subject><subject>Soil degradation</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil Pollutants</subject><subject>Soil pollution</subject><subject>Soil resistance</subject><subject>Soils</subject><subject>Systems stability</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoWh9rdxJwI8jUm2TSzLiTWh-gKD7A3ZDJZDQyTWqSCv33Zmh1IQiu8vruubnnILRPYEiAkhOpwlCHOMwVCFKUa2hAOIWMF5ysowEAYVnJRi9baDuEdwCgDIpNtMVKPiKsoAO0uO-kjca-4ol9k1bpgB-d6fCDDibE_gJHh2-N8m7WyRCNCqd48mka3T-13k3xWPraWTyZmhCMswFL2-DzdHDdp27wnX-V1ih8K2PUHj9GWZvOxMUu2mhlF_Teat1BzxeTp_FVdnN3eT0-u8kkFUXMOCGalYJBmzZKaZmXwJUEDmUO0GrNZatImauaFnUraqYZEW0DUuTNiNWE7aCjpe7Mu495MqtKH1W6S3NrNw8VIzynyTRg_0CTfVRwkSf08Bf67ubepkESlTNWUlKIRJ0sqWRfCF631cybqfSLikDVB1ilAKu-ehVgqjhY6c7rqW5--O_EEnC8BPrKn55_yX0BK9qmww</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Wang, Qi</creator><creator>Liu, Weitao</creator><creator>Zhou, Qixing</creator><creator>Wang, Shuting</creator><creator>Mo, Fan</creator><creator>Wu, Xinyi</creator><creator>Wang, Jianling</creator><creator>Shi, Ruiying</creator><creator>Li, Xiang</creator><creator>Yin, Chuan</creator><creator>Sun, Yuebing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4864-1715</orcidid><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></search><sort><creationdate>20241203</creationdate><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><author>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anthropogenic factors</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sources</topic><topic>Comparative analysis</topic><topic>Cyclotron resonance</topic><topic>Dissolved organic matter</topic><topic>ecological balance</topic><topic>Ecosystem stability</topic><topic>ecosystems</topic><topic>Emissions</topic><topic>environmental science</topic><topic>Fermentation</topic><topic>Fourier transforms</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microorganisms</topic><topic>Microplastics</topic><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><topic>Organic soils</topic><topic>planting</topic><topic>Plastic pollution</topic><topic>Radishes</topic><topic>Raphanus</topic><topic>Raphanus sativus</topic><topic>Rhizosphere</topic><topic>soil</topic><topic>Soil - chemistry</topic><topic>Soil analysis</topic><topic>Soil degradation</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil Pollutants</topic><topic>Soil pollution</topic><topic>Soil resistance</topic><topic>Soils</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zhou, Qixing</creatorcontrib><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Wu, Xinyi</creatorcontrib><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yin, Chuan</creatorcontrib><creatorcontrib>Sun, Yuebing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Liu, Weitao</au><au>Zhou, Qixing</au><au>Wang, Shuting</au><au>Mo, Fan</au><au>Wu, Xinyi</au><au>Wang, Jianling</au><au>Shi, Ruiying</au><au>Li, Xiang</au><au>Yin, Chuan</au><au>Sun, Yuebing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>58</volume><issue>48</issue><spage>21327</spage><epage>21338</epage><pages>21327-21338</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39561382</pmid><doi>10.1021/acs.est.4c07189</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4864-1715</orcidid><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-12, Vol.58 (48), p.21327-21338
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3154252003
source ACS Publications; MEDLINE
subjects Anthropogenic factors
Biodegradation
Biodiversity
Carbon
Carbon dioxide
Carbon dioxide emissions
Carbon sources
Comparative analysis
Cyclotron resonance
Dissolved organic matter
ecological balance
Ecosystem stability
ecosystems
Emissions
environmental science
Fermentation
Fourier transforms
Mass spectrometry
Mass spectroscopy
Microorganisms
Microplastics
Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants
Organic soils
planting
Plastic pollution
Radishes
Raphanus
Raphanus sativus
Rhizosphere
soil
Soil - chemistry
Soil analysis
Soil degradation
Soil Microbiology
Soil microorganisms
Soil Pollutants
Soil pollution
Soil resistance
Soils
Systems stability
title Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planting%20Enhances%20Soil%20Resistance%20to%20Microplastics:%20Evidence%20from%20Carbon%20Emissions%20and%20Dissolved%20Organic%20Matter%20Stability&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Qi&rft.date=2024-12-03&rft.volume=58&rft.issue=48&rft.spage=21327&rft.epage=21338&rft.pages=21327-21338&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c07189&rft_dat=%3Cproquest_cross%3E3130827574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143392187&rft_id=info:pmid/39561382&rfr_iscdi=true