Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability
Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-12, Vol.58 (48), p.21327-21338 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21338 |
---|---|
container_issue | 48 |
container_start_page | 21327 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Wang, Qi Liu, Weitao Zhou, Qixing Wang, Shuting Mo, Fan Wu, Xinyi Wang, Jianling Shi, Ruiying Li, Xiang Yin, Chuan Sun, Yuebing |
description | Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source. |
doi_str_mv | 10.1021/acs.est.4c07189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154252003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130827574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWh9rdxJwI8jUm2TSzLiTWh-gKD7A3ZDJZDQyTWqSCv33Zmh1IQiu8vruubnnILRPYEiAkhOpwlCHOMwVCFKUa2hAOIWMF5ysowEAYVnJRi9baDuEdwCgDIpNtMVKPiKsoAO0uO-kjca-4ol9k1bpgB-d6fCDDibE_gJHh2-N8m7WyRCNCqd48mka3T-13k3xWPraWTyZmhCMswFL2-DzdHDdp27wnX-V1ih8K2PUHj9GWZvOxMUu2mhlF_Teat1BzxeTp_FVdnN3eT0-u8kkFUXMOCGalYJBmzZKaZmXwJUEDmUO0GrNZatImauaFnUraqYZEW0DUuTNiNWE7aCjpe7Mu495MqtKH1W6S3NrNw8VIzynyTRg_0CTfVRwkSf08Bf67ubepkESlTNWUlKIRJ0sqWRfCF631cybqfSLikDVB1ilAKu-ehVgqjhY6c7rqW5--O_EEnC8BPrKn55_yX0BK9qmww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143392187</pqid></control><display><type>article</type><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</creator><creatorcontrib>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</creatorcontrib><description>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c07189</identifier><identifier>PMID: 39561382</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthropogenic factors ; Biodegradation ; Biodiversity ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sources ; Comparative analysis ; Cyclotron resonance ; Dissolved organic matter ; ecological balance ; Ecosystem stability ; ecosystems ; Emissions ; environmental science ; Fermentation ; Fourier transforms ; Mass spectrometry ; Mass spectroscopy ; Microorganisms ; Microplastics ; Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants ; Organic soils ; planting ; Plastic pollution ; Radishes ; Raphanus ; Raphanus sativus ; Rhizosphere ; soil ; Soil - chemistry ; Soil analysis ; Soil degradation ; Soil Microbiology ; Soil microorganisms ; Soil Pollutants ; Soil pollution ; Soil resistance ; Soils ; Systems stability</subject><ispartof>Environmental science & technology, 2024-12, Vol.58 (48), p.21327-21338</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 3, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</cites><orcidid>0000-0003-4864-1715 ; 0000-0003-1352-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c07189$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c07189$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39561382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zhou, Qixing</creatorcontrib><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Wu, Xinyi</creatorcontrib><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yin, Chuan</creatorcontrib><creatorcontrib>Sun, Yuebing</creatorcontrib><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</description><subject>Anthropogenic factors</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sources</subject><subject>Comparative analysis</subject><subject>Cyclotron resonance</subject><subject>Dissolved organic matter</subject><subject>ecological balance</subject><subject>Ecosystem stability</subject><subject>ecosystems</subject><subject>Emissions</subject><subject>environmental science</subject><subject>Fermentation</subject><subject>Fourier transforms</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microorganisms</subject><subject>Microplastics</subject><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><subject>Organic soils</subject><subject>planting</subject><subject>Plastic pollution</subject><subject>Radishes</subject><subject>Raphanus</subject><subject>Raphanus sativus</subject><subject>Rhizosphere</subject><subject>soil</subject><subject>Soil - chemistry</subject><subject>Soil analysis</subject><subject>Soil degradation</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil Pollutants</subject><subject>Soil pollution</subject><subject>Soil resistance</subject><subject>Soils</subject><subject>Systems stability</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoWh9rdxJwI8jUm2TSzLiTWh-gKD7A3ZDJZDQyTWqSCv33Zmh1IQiu8vruubnnILRPYEiAkhOpwlCHOMwVCFKUa2hAOIWMF5ysowEAYVnJRi9baDuEdwCgDIpNtMVKPiKsoAO0uO-kjca-4ol9k1bpgB-d6fCDDibE_gJHh2-N8m7WyRCNCqd48mka3T-13k3xWPraWTyZmhCMswFL2-DzdHDdp27wnX-V1ih8K2PUHj9GWZvOxMUu2mhlF_Teat1BzxeTp_FVdnN3eT0-u8kkFUXMOCGalYJBmzZKaZmXwJUEDmUO0GrNZatImauaFnUraqYZEW0DUuTNiNWE7aCjpe7Mu495MqtKH1W6S3NrNw8VIzynyTRg_0CTfVRwkSf08Bf67ubepkESlTNWUlKIRJ0sqWRfCF631cybqfSLikDVB1ilAKu-ehVgqjhY6c7rqW5--O_EEnC8BPrKn55_yX0BK9qmww</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Wang, Qi</creator><creator>Liu, Weitao</creator><creator>Zhou, Qixing</creator><creator>Wang, Shuting</creator><creator>Mo, Fan</creator><creator>Wu, Xinyi</creator><creator>Wang, Jianling</creator><creator>Shi, Ruiying</creator><creator>Li, Xiang</creator><creator>Yin, Chuan</creator><creator>Sun, Yuebing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4864-1715</orcidid><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></search><sort><creationdate>20241203</creationdate><title>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</title><author>Wang, Qi ; Liu, Weitao ; Zhou, Qixing ; Wang, Shuting ; Mo, Fan ; Wu, Xinyi ; Wang, Jianling ; Shi, Ruiying ; Li, Xiang ; Yin, Chuan ; Sun, Yuebing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-511e39730f11eccea4905ca0509400fee5afc194cb28bf7b3e317fd0a74d63b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anthropogenic factors</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sources</topic><topic>Comparative analysis</topic><topic>Cyclotron resonance</topic><topic>Dissolved organic matter</topic><topic>ecological balance</topic><topic>Ecosystem stability</topic><topic>ecosystems</topic><topic>Emissions</topic><topic>environmental science</topic><topic>Fermentation</topic><topic>Fourier transforms</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microorganisms</topic><topic>Microplastics</topic><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><topic>Organic soils</topic><topic>planting</topic><topic>Plastic pollution</topic><topic>Radishes</topic><topic>Raphanus</topic><topic>Raphanus sativus</topic><topic>Rhizosphere</topic><topic>soil</topic><topic>Soil - chemistry</topic><topic>Soil analysis</topic><topic>Soil degradation</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil Pollutants</topic><topic>Soil pollution</topic><topic>Soil resistance</topic><topic>Soils</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zhou, Qixing</creatorcontrib><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Wu, Xinyi</creatorcontrib><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yin, Chuan</creatorcontrib><creatorcontrib>Sun, Yuebing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Liu, Weitao</au><au>Zhou, Qixing</au><au>Wang, Shuting</au><au>Mo, Fan</au><au>Wu, Xinyi</au><au>Wang, Jianling</au><au>Shi, Ruiying</au><au>Li, Xiang</au><au>Yin, Chuan</au><au>Sun, Yuebing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>58</volume><issue>48</issue><spage>21327</spage><epage>21338</epage><pages>21327-21338</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39561382</pmid><doi>10.1021/acs.est.4c07189</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4864-1715</orcidid><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-12, Vol.58 (48), p.21327-21338 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154252003 |
source | ACS Publications; MEDLINE |
subjects | Anthropogenic factors Biodegradation Biodiversity Carbon Carbon dioxide Carbon dioxide emissions Carbon sources Comparative analysis Cyclotron resonance Dissolved organic matter ecological balance Ecosystem stability ecosystems Emissions environmental science Fermentation Fourier transforms Mass spectrometry Mass spectroscopy Microorganisms Microplastics Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Organic soils planting Plastic pollution Radishes Raphanus Raphanus sativus Rhizosphere soil Soil - chemistry Soil analysis Soil degradation Soil Microbiology Soil microorganisms Soil Pollutants Soil pollution Soil resistance Soils Systems stability |
title | Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planting%20Enhances%20Soil%20Resistance%20to%20Microplastics:%20Evidence%20from%20Carbon%20Emissions%20and%20Dissolved%20Organic%20Matter%20Stability&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Qi&rft.date=2024-12-03&rft.volume=58&rft.issue=48&rft.spage=21327&rft.epage=21338&rft.pages=21327-21338&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c07189&rft_dat=%3Cproquest_cross%3E3130827574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143392187&rft_id=info:pmid/39561382&rfr_iscdi=true |