Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications
•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, r...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2024-12, Vol.232, p.81-88 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | Methods (San Diego, Calif.) |
container_volume | 232 |
creator | Kha, Quang-Hien Nguyen, Ngan Thi Kim Le, Nguyen Quoc Khanh Kang, Jiunn-Horng |
description | •First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions.
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings. |
doi_str_mv | 10.1016/j.ymeth.2024.10.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154250286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202324002378</els_id><sourcerecordid>3154250286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</originalsourceid><addsrcrecordid>eNqNkU9PXCEUxYnRqLX9BE0alm7eyL95A4sujLWtiYkbXRMGLg6T92AKzDTGLy_PsV0aN0AOv3tucg5CXymZUUL7i_XsaYS6mjHCRFNmhLIDdEqJmneKcnI4vUXftW9-gj6VsiakIQt5jE64ElJRJU_R8w_YwZA2I8SKTXR4Z4bgTA0p4uSxwaOxqxABD2ByDPERj8nBgH3KeJPBBVsn0eXtYzcdOMQK2djJoOC_oa5wymbALpglVCh4nGZe_ctndOTNUODL232GHn5e31_97m7vft1cXd52li1Y7TwI7xl3hvZUUOeVFRKYMnPWu4WjwKSwXEimhAW7dMxaZl3DnSNemH7Jz9D53neT058tlKrHUCwMg4mQtkVzOhdsTpjsP4AyLgkjSjaU71GbUykZvN7kMJr8pCnRU0F6rV8L0lNBk9jSb1Pf3hZsly2K_zP_GmnA9z0ALZFdgKyLDRBtiy2Drdql8O6CF9YMpcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123802098</pqid></control><display><type>article</type><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</creator><creatorcontrib>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</creatorcontrib><description>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions.
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</description><identifier>ISSN: 1046-2023</identifier><identifier>ISSN: 1095-9130</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2024.10.012</identifier><identifier>PMID: 39489198</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Administration, Oral ; comorbidity ; Comorbidity Management ; data collection ; decision making ; diabetes ; Diabetes Mellitus - drug therapy ; Drug Interactions ; drug therapy ; Drug-Drug Interactions ; eXtreme Gradient Boosting ; Humans ; Hypoglycemic Agents - pharmacology ; Hypoglycemic Agents - therapeutic use ; Internet ; Machine Learning ; Oral Diabetes Medications ; prediction ; risk ; Simplified Molecular Input Line Entry System ; toxicity</subject><ispartof>Methods (San Diego, Calif.), 2024-12, Vol.232, p.81-88</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1046202324002378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39489198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kha, Quang-Hien</creatorcontrib><creatorcontrib>Nguyen, Ngan Thi Kim</creatorcontrib><creatorcontrib>Le, Nguyen Quoc Khanh</creatorcontrib><creatorcontrib>Kang, Jiunn-Horng</creatorcontrib><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions.
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</description><subject>Administration, Oral</subject><subject>comorbidity</subject><subject>Comorbidity Management</subject><subject>data collection</subject><subject>decision making</subject><subject>diabetes</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Drug Interactions</subject><subject>drug therapy</subject><subject>Drug-Drug Interactions</subject><subject>eXtreme Gradient Boosting</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Internet</subject><subject>Machine Learning</subject><subject>Oral Diabetes Medications</subject><subject>prediction</subject><subject>risk</subject><subject>Simplified Molecular Input Line Entry System</subject><subject>toxicity</subject><issn>1046-2023</issn><issn>1095-9130</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PXCEUxYnRqLX9BE0alm7eyL95A4sujLWtiYkbXRMGLg6T92AKzDTGLy_PsV0aN0AOv3tucg5CXymZUUL7i_XsaYS6mjHCRFNmhLIDdEqJmneKcnI4vUXftW9-gj6VsiakIQt5jE64ElJRJU_R8w_YwZA2I8SKTXR4Z4bgTA0p4uSxwaOxqxABD2ByDPERj8nBgH3KeJPBBVsn0eXtYzcdOMQK2djJoOC_oa5wymbALpglVCh4nGZe_ctndOTNUODL232GHn5e31_97m7vft1cXd52li1Y7TwI7xl3hvZUUOeVFRKYMnPWu4WjwKSwXEimhAW7dMxaZl3DnSNemH7Jz9D53neT058tlKrHUCwMg4mQtkVzOhdsTpjsP4AyLgkjSjaU71GbUykZvN7kMJr8pCnRU0F6rV8L0lNBk9jSb1Pf3hZsly2K_zP_GmnA9z0ALZFdgKyLDRBtiy2Drdql8O6CF9YMpcM</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kha, Quang-Hien</creator><creator>Nguyen, Ngan Thi Kim</creator><creator>Le, Nguyen Quoc Khanh</creator><creator>Kang, Jiunn-Horng</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202412</creationdate><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><author>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Oral</topic><topic>comorbidity</topic><topic>Comorbidity Management</topic><topic>data collection</topic><topic>decision making</topic><topic>diabetes</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Drug Interactions</topic><topic>drug therapy</topic><topic>Drug-Drug Interactions</topic><topic>eXtreme Gradient Boosting</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Internet</topic><topic>Machine Learning</topic><topic>Oral Diabetes Medications</topic><topic>prediction</topic><topic>risk</topic><topic>Simplified Molecular Input Line Entry System</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kha, Quang-Hien</creatorcontrib><creatorcontrib>Nguyen, Ngan Thi Kim</creatorcontrib><creatorcontrib>Le, Nguyen Quoc Khanh</creatorcontrib><creatorcontrib>Kang, Jiunn-Horng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kha, Quang-Hien</au><au>Nguyen, Ngan Thi Kim</au><au>Le, Nguyen Quoc Khanh</au><au>Kang, Jiunn-Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2024-12</date><risdate>2024</risdate><volume>232</volume><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1046-2023</issn><issn>1095-9130</issn><eissn>1095-9130</eissn><abstract>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions.
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39489198</pmid><doi>10.1016/j.ymeth.2024.10.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2024-12, Vol.232, p.81-88 |
issn | 1046-2023 1095-9130 1095-9130 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154250286 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Administration, Oral comorbidity Comorbidity Management data collection decision making diabetes Diabetes Mellitus - drug therapy Drug Interactions drug therapy Drug-Drug Interactions eXtreme Gradient Boosting Humans Hypoglycemic Agents - pharmacology Hypoglycemic Agents - therapeutic use Internet Machine Learning Oral Diabetes Medications prediction risk Simplified Molecular Input Line Entry System toxicity |
title | Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20machine%20learning%20model%20for%20predicting%20drug-drug%20interactions%20with%20oral%20diabetes%20medications&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Kha,%20Quang-Hien&rft.date=2024-12&rft.volume=232&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2024.10.012&rft_dat=%3Cproquest_cross%3E3154250286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123802098&rft_id=info:pmid/39489198&rft_els_id=S1046202324002378&rfr_iscdi=true |