Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications

•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2024-12, Vol.232, p.81-88
Hauptverfasser: Kha, Quang-Hien, Nguyen, Ngan Thi Kim, Le, Nguyen Quoc Khanh, Kang, Jiunn-Horng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 81
container_title Methods (San Diego, Calif.)
container_volume 232
creator Kha, Quang-Hien
Nguyen, Ngan Thi Kim
Le, Nguyen Quoc Khanh
Kang, Jiunn-Horng
description •First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
doi_str_mv 10.1016/j.ymeth.2024.10.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154250286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202324002378</els_id><sourcerecordid>3154250286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</originalsourceid><addsrcrecordid>eNqNkU9PXCEUxYnRqLX9BE0alm7eyL95A4sujLWtiYkbXRMGLg6T92AKzDTGLy_PsV0aN0AOv3tucg5CXymZUUL7i_XsaYS6mjHCRFNmhLIDdEqJmneKcnI4vUXftW9-gj6VsiakIQt5jE64ElJRJU_R8w_YwZA2I8SKTXR4Z4bgTA0p4uSxwaOxqxABD2ByDPERj8nBgH3KeJPBBVsn0eXtYzcdOMQK2djJoOC_oa5wymbALpglVCh4nGZe_ctndOTNUODL232GHn5e31_97m7vft1cXd52li1Y7TwI7xl3hvZUUOeVFRKYMnPWu4WjwKSwXEimhAW7dMxaZl3DnSNemH7Jz9D53neT058tlKrHUCwMg4mQtkVzOhdsTpjsP4AyLgkjSjaU71GbUykZvN7kMJr8pCnRU0F6rV8L0lNBk9jSb1Pf3hZsly2K_zP_GmnA9z0ALZFdgKyLDRBtiy2Drdql8O6CF9YMpcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123802098</pqid></control><display><type>article</type><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</creator><creatorcontrib>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</creatorcontrib><description>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</description><identifier>ISSN: 1046-2023</identifier><identifier>ISSN: 1095-9130</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2024.10.012</identifier><identifier>PMID: 39489198</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Administration, Oral ; comorbidity ; Comorbidity Management ; data collection ; decision making ; diabetes ; Diabetes Mellitus - drug therapy ; Drug Interactions ; drug therapy ; Drug-Drug Interactions ; eXtreme Gradient Boosting ; Humans ; Hypoglycemic Agents - pharmacology ; Hypoglycemic Agents - therapeutic use ; Internet ; Machine Learning ; Oral Diabetes Medications ; prediction ; risk ; Simplified Molecular Input Line Entry System ; toxicity</subject><ispartof>Methods (San Diego, Calif.), 2024-12, Vol.232, p.81-88</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1046202324002378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39489198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kha, Quang-Hien</creatorcontrib><creatorcontrib>Nguyen, Ngan Thi Kim</creatorcontrib><creatorcontrib>Le, Nguyen Quoc Khanh</creatorcontrib><creatorcontrib>Kang, Jiunn-Horng</creatorcontrib><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</description><subject>Administration, Oral</subject><subject>comorbidity</subject><subject>Comorbidity Management</subject><subject>data collection</subject><subject>decision making</subject><subject>diabetes</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Drug Interactions</subject><subject>drug therapy</subject><subject>Drug-Drug Interactions</subject><subject>eXtreme Gradient Boosting</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Internet</subject><subject>Machine Learning</subject><subject>Oral Diabetes Medications</subject><subject>prediction</subject><subject>risk</subject><subject>Simplified Molecular Input Line Entry System</subject><subject>toxicity</subject><issn>1046-2023</issn><issn>1095-9130</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PXCEUxYnRqLX9BE0alm7eyL95A4sujLWtiYkbXRMGLg6T92AKzDTGLy_PsV0aN0AOv3tucg5CXymZUUL7i_XsaYS6mjHCRFNmhLIDdEqJmneKcnI4vUXftW9-gj6VsiakIQt5jE64ElJRJU_R8w_YwZA2I8SKTXR4Z4bgTA0p4uSxwaOxqxABD2ByDPERj8nBgH3KeJPBBVsn0eXtYzcdOMQK2djJoOC_oa5wymbALpglVCh4nGZe_ctndOTNUODL232GHn5e31_97m7vft1cXd52li1Y7TwI7xl3hvZUUOeVFRKYMnPWu4WjwKSwXEimhAW7dMxaZl3DnSNemH7Jz9D53neT058tlKrHUCwMg4mQtkVzOhdsTpjsP4AyLgkjSjaU71GbUykZvN7kMJr8pCnRU0F6rV8L0lNBk9jSb1Pf3hZsly2K_zP_GmnA9z0ALZFdgKyLDRBtiy2Drdql8O6CF9YMpcM</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kha, Quang-Hien</creator><creator>Nguyen, Ngan Thi Kim</creator><creator>Le, Nguyen Quoc Khanh</creator><creator>Kang, Jiunn-Horng</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202412</creationdate><title>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</title><author>Kha, Quang-Hien ; Nguyen, Ngan Thi Kim ; Le, Nguyen Quoc Khanh ; Kang, Jiunn-Horng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-fe4ff23da16141df9c48e29a526d7d1e284c348294cecbd2cc2cd3dadd0f4a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Oral</topic><topic>comorbidity</topic><topic>Comorbidity Management</topic><topic>data collection</topic><topic>decision making</topic><topic>diabetes</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Drug Interactions</topic><topic>drug therapy</topic><topic>Drug-Drug Interactions</topic><topic>eXtreme Gradient Boosting</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Internet</topic><topic>Machine Learning</topic><topic>Oral Diabetes Medications</topic><topic>prediction</topic><topic>risk</topic><topic>Simplified Molecular Input Line Entry System</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kha, Quang-Hien</creatorcontrib><creatorcontrib>Nguyen, Ngan Thi Kim</creatorcontrib><creatorcontrib>Le, Nguyen Quoc Khanh</creatorcontrib><creatorcontrib>Kang, Jiunn-Horng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kha, Quang-Hien</au><au>Nguyen, Ngan Thi Kim</au><au>Le, Nguyen Quoc Khanh</au><au>Kang, Jiunn-Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2024-12</date><risdate>2024</risdate><volume>232</volume><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1046-2023</issn><issn>1095-9130</issn><eissn>1095-9130</eissn><abstract>•First to use SMILES for structuring oral diabetes drugs.•Developed a high-performing XGBoost model for drug interactions.•Applied SHAP for transparent feature interpretation.•Predicted adverse interactions, supporting safer prescriptions. Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39489198</pmid><doi>10.1016/j.ymeth.2024.10.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2024-12, Vol.232, p.81-88
issn 1046-2023
1095-9130
1095-9130
language eng
recordid cdi_proquest_miscellaneous_3154250286
source MEDLINE; Elsevier ScienceDirect Journals
subjects Administration, Oral
comorbidity
Comorbidity Management
data collection
decision making
diabetes
Diabetes Mellitus - drug therapy
Drug Interactions
drug therapy
Drug-Drug Interactions
eXtreme Gradient Boosting
Humans
Hypoglycemic Agents - pharmacology
Hypoglycemic Agents - therapeutic use
Internet
Machine Learning
Oral Diabetes Medications
prediction
risk
Simplified Molecular Input Line Entry System
toxicity
title Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20machine%20learning%20model%20for%20predicting%20drug-drug%20interactions%20with%20oral%20diabetes%20medications&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Kha,%20Quang-Hien&rft.date=2024-12&rft.volume=232&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2024.10.012&rft_dat=%3Cproquest_cross%3E3154250286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123802098&rft_id=info:pmid/39489198&rft_els_id=S1046202324002378&rfr_iscdi=true