Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients
We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline pl...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2024-12, Vol.23 (12), p.5421-5437 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5437 |
---|---|
container_issue | 12 |
container_start_page | 5421 |
container_title | Journal of proteome research |
container_volume | 23 |
creator | Zeng, Jingjing Wang, Changyi Guo, Jiamin Zhao, Tian Wang, Han Zhang, Ruijie Pu, Liyuan Yang, Huiqun Liang, Jie Han, Liyuan Li, Lei |
description | We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999). |
doi_str_mv | 10.1021/acs.jproteome.4c00559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154249509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121284121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</originalsourceid><addsrcrecordid>eNqNkc1OGzEURq2qqFDaR2jlZTcJ_hl77GUU2oIEIgK6HnmcazD1jIPtacWyb15DAlvY-Hrxne9K9yD0hZI5JYweGZvnd5sUC8QB5o0lRAj9Dh1QwcWMa9K-f_4rzffRx5zvCKGiJfwD2ue6kZIqcYD-nU-h-Dh4m_EqReeDH29wdHgVTB4MvoQ_YELG5zGAnYJJeBEKJFOZ8ZHwMeESscHH3tyMMfuM__pyi69Kir8BL4ZY65a3foQM-ORhA6nAmCuMV7UDxpI_oT1XN8Dn3TxEv358v16ezM4ufp4uF2czwyQrM8G4dEoJxYyUiq-FtWvijDNta7RVWskWQPdCQs9azQSwpm1J40zfgxNW8kP0bdtbj3Y_QS7d4LOFEMwIccodp6JhjRZEvyHKKFNNfWtUbKM2xZwTuG6T_GDSQ0dJ9yiqq6K6F1HdTlTlvu5WTP0A6xfq2UwN0G3giY9TGutxXin9D3EMpfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121284121</pqid></control><display><type>article</type><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</creator><creatorcontrib>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</creatorcontrib><description>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.4c00559</identifier><identifier>PMID: 39466185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>absorption ; Aged ; artificial intelligence ; biomarkers ; Biomarkers - blood ; Blood Proteins - analysis ; body weight ; caprolactam ; Case-Control Studies ; China ; Computational Biology - methods ; confidence interval ; digestion ; East Asian People ; Female ; Humans ; hypertension ; Hypertension - blood ; Hypertension - complications ; Male ; mass spectrometry ; metabolites ; metabolomics ; Metabolomics - methods ; microfilaments ; Middle Aged ; Multiomics ; proteome ; proteomics ; Proteomics - methods ; risk ; secretion ; stroke ; Stroke - blood ; Support Vector Machine</subject><ispartof>Journal of proteome research, 2024-12, Vol.23 (12), p.5421-5437</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</cites><orcidid>0000-0002-3329-3212 ; 0000-0001-6536-1438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.4c00559$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.4c00559$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Jingjing</creatorcontrib><creatorcontrib>Wang, Changyi</creatorcontrib><creatorcontrib>Guo, Jiamin</creatorcontrib><creatorcontrib>Zhao, Tian</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Pu, Liyuan</creatorcontrib><creatorcontrib>Yang, Huiqun</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</description><subject>absorption</subject><subject>Aged</subject><subject>artificial intelligence</subject><subject>biomarkers</subject><subject>Biomarkers - blood</subject><subject>Blood Proteins - analysis</subject><subject>body weight</subject><subject>caprolactam</subject><subject>Case-Control Studies</subject><subject>China</subject><subject>Computational Biology - methods</subject><subject>confidence interval</subject><subject>digestion</subject><subject>East Asian People</subject><subject>Female</subject><subject>Humans</subject><subject>hypertension</subject><subject>Hypertension - blood</subject><subject>Hypertension - complications</subject><subject>Male</subject><subject>mass spectrometry</subject><subject>metabolites</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>microfilaments</subject><subject>Middle Aged</subject><subject>Multiomics</subject><subject>proteome</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>risk</subject><subject>secretion</subject><subject>stroke</subject><subject>Stroke - blood</subject><subject>Support Vector Machine</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1OGzEURq2qqFDaR2jlZTcJ_hl77GUU2oIEIgK6HnmcazD1jIPtacWyb15DAlvY-Hrxne9K9yD0hZI5JYweGZvnd5sUC8QB5o0lRAj9Dh1QwcWMa9K-f_4rzffRx5zvCKGiJfwD2ue6kZIqcYD-nU-h-Dh4m_EqReeDH29wdHgVTB4MvoQ_YELG5zGAnYJJeBEKJFOZ8ZHwMeESscHH3tyMMfuM__pyi69Kir8BL4ZY65a3foQM-ORhA6nAmCuMV7UDxpI_oT1XN8Dn3TxEv358v16ezM4ufp4uF2czwyQrM8G4dEoJxYyUiq-FtWvijDNta7RVWskWQPdCQs9azQSwpm1J40zfgxNW8kP0bdtbj3Y_QS7d4LOFEMwIccodp6JhjRZEvyHKKFNNfWtUbKM2xZwTuG6T_GDSQ0dJ9yiqq6K6F1HdTlTlvu5WTP0A6xfq2UwN0G3giY9TGutxXin9D3EMpfg</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Zeng, Jingjing</creator><creator>Wang, Changyi</creator><creator>Guo, Jiamin</creator><creator>Zhao, Tian</creator><creator>Wang, Han</creator><creator>Zhang, Ruijie</creator><creator>Pu, Liyuan</creator><creator>Yang, Huiqun</creator><creator>Liang, Jie</creator><creator>Han, Liyuan</creator><creator>Li, Lei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3329-3212</orcidid><orcidid>https://orcid.org/0000-0001-6536-1438</orcidid></search><sort><creationdate>20241206</creationdate><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><author>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>Aged</topic><topic>artificial intelligence</topic><topic>biomarkers</topic><topic>Biomarkers - blood</topic><topic>Blood Proteins - analysis</topic><topic>body weight</topic><topic>caprolactam</topic><topic>Case-Control Studies</topic><topic>China</topic><topic>Computational Biology - methods</topic><topic>confidence interval</topic><topic>digestion</topic><topic>East Asian People</topic><topic>Female</topic><topic>Humans</topic><topic>hypertension</topic><topic>Hypertension - blood</topic><topic>Hypertension - complications</topic><topic>Male</topic><topic>mass spectrometry</topic><topic>metabolites</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>microfilaments</topic><topic>Middle Aged</topic><topic>Multiomics</topic><topic>proteome</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>risk</topic><topic>secretion</topic><topic>stroke</topic><topic>Stroke - blood</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Jingjing</creatorcontrib><creatorcontrib>Wang, Changyi</creatorcontrib><creatorcontrib>Guo, Jiamin</creatorcontrib><creatorcontrib>Zhao, Tian</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Pu, Liyuan</creatorcontrib><creatorcontrib>Yang, Huiqun</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Jingjing</au><au>Wang, Changyi</au><au>Guo, Jiamin</au><au>Zhao, Tian</au><au>Wang, Han</au><au>Zhang, Ruijie</au><au>Pu, Liyuan</au><au>Yang, Huiqun</au><au>Liang, Jie</au><au>Han, Liyuan</au><au>Li, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>5421</spage><epage>5437</epage><pages>5421-5437</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39466185</pmid><doi>10.1021/acs.jproteome.4c00559</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3329-3212</orcidid><orcidid>https://orcid.org/0000-0001-6536-1438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2024-12, Vol.23 (12), p.5421-5437 |
issn | 1535-3893 1535-3907 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154249509 |
source | MEDLINE; American Chemical Society Journals |
subjects | absorption Aged artificial intelligence biomarkers Biomarkers - blood Blood Proteins - analysis body weight caprolactam Case-Control Studies China Computational Biology - methods confidence interval digestion East Asian People Female Humans hypertension Hypertension - blood Hypertension - complications Male mass spectrometry metabolites metabolomics Metabolomics - methods microfilaments Middle Aged Multiomics proteome proteomics Proteomics - methods risk secretion stroke Stroke - blood Support Vector Machine |
title | Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiomics%20Profiling%20of%20Plasma%20Reveals%20Molecular%20Alterations%20Prior%20to%20a%20Diagnosis%20with%20Stroke%20Among%20Chinese%20Hypertension%20Patients&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Zeng,%20Jingjing&rft.date=2024-12-06&rft.volume=23&rft.issue=12&rft.spage=5421&rft.epage=5437&rft.pages=5421-5437&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.4c00559&rft_dat=%3Cproquest_cross%3E3121284121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121284121&rft_id=info:pmid/39466185&rfr_iscdi=true |