Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients

We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2024-12, Vol.23 (12), p.5421-5437
Hauptverfasser: Zeng, Jingjing, Wang, Changyi, Guo, Jiamin, Zhao, Tian, Wang, Han, Zhang, Ruijie, Pu, Liyuan, Yang, Huiqun, Liang, Jie, Han, Liyuan, Li, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5437
container_issue 12
container_start_page 5421
container_title Journal of proteome research
container_volume 23
creator Zeng, Jingjing
Wang, Changyi
Guo, Jiamin
Zhao, Tian
Wang, Han
Zhang, Ruijie
Pu, Liyuan
Yang, Huiqun
Liang, Jie
Han, Liyuan
Li, Lei
description We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).
doi_str_mv 10.1021/acs.jproteome.4c00559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154249509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121284121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</originalsourceid><addsrcrecordid>eNqNkc1OGzEURq2qqFDaR2jlZTcJ_hl77GUU2oIEIgK6HnmcazD1jIPtacWyb15DAlvY-Hrxne9K9yD0hZI5JYweGZvnd5sUC8QB5o0lRAj9Dh1QwcWMa9K-f_4rzffRx5zvCKGiJfwD2ue6kZIqcYD-nU-h-Dh4m_EqReeDH29wdHgVTB4MvoQ_YELG5zGAnYJJeBEKJFOZ8ZHwMeESscHH3tyMMfuM__pyi69Kir8BL4ZY65a3foQM-ORhA6nAmCuMV7UDxpI_oT1XN8Dn3TxEv358v16ezM4ufp4uF2czwyQrM8G4dEoJxYyUiq-FtWvijDNta7RVWskWQPdCQs9azQSwpm1J40zfgxNW8kP0bdtbj3Y_QS7d4LOFEMwIccodp6JhjRZEvyHKKFNNfWtUbKM2xZwTuG6T_GDSQ0dJ9yiqq6K6F1HdTlTlvu5WTP0A6xfq2UwN0G3giY9TGutxXin9D3EMpfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121284121</pqid></control><display><type>article</type><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</creator><creatorcontrib>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</creatorcontrib><description>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.4c00559</identifier><identifier>PMID: 39466185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>absorption ; Aged ; artificial intelligence ; biomarkers ; Biomarkers - blood ; Blood Proteins - analysis ; body weight ; caprolactam ; Case-Control Studies ; China ; Computational Biology - methods ; confidence interval ; digestion ; East Asian People ; Female ; Humans ; hypertension ; Hypertension - blood ; Hypertension - complications ; Male ; mass spectrometry ; metabolites ; metabolomics ; Metabolomics - methods ; microfilaments ; Middle Aged ; Multiomics ; proteome ; proteomics ; Proteomics - methods ; risk ; secretion ; stroke ; Stroke - blood ; Support Vector Machine</subject><ispartof>Journal of proteome research, 2024-12, Vol.23 (12), p.5421-5437</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</cites><orcidid>0000-0002-3329-3212 ; 0000-0001-6536-1438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.4c00559$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.4c00559$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Jingjing</creatorcontrib><creatorcontrib>Wang, Changyi</creatorcontrib><creatorcontrib>Guo, Jiamin</creatorcontrib><creatorcontrib>Zhao, Tian</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Pu, Liyuan</creatorcontrib><creatorcontrib>Yang, Huiqun</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</description><subject>absorption</subject><subject>Aged</subject><subject>artificial intelligence</subject><subject>biomarkers</subject><subject>Biomarkers - blood</subject><subject>Blood Proteins - analysis</subject><subject>body weight</subject><subject>caprolactam</subject><subject>Case-Control Studies</subject><subject>China</subject><subject>Computational Biology - methods</subject><subject>confidence interval</subject><subject>digestion</subject><subject>East Asian People</subject><subject>Female</subject><subject>Humans</subject><subject>hypertension</subject><subject>Hypertension - blood</subject><subject>Hypertension - complications</subject><subject>Male</subject><subject>mass spectrometry</subject><subject>metabolites</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>microfilaments</subject><subject>Middle Aged</subject><subject>Multiomics</subject><subject>proteome</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>risk</subject><subject>secretion</subject><subject>stroke</subject><subject>Stroke - blood</subject><subject>Support Vector Machine</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1OGzEURq2qqFDaR2jlZTcJ_hl77GUU2oIEIgK6HnmcazD1jIPtacWyb15DAlvY-Hrxne9K9yD0hZI5JYweGZvnd5sUC8QB5o0lRAj9Dh1QwcWMa9K-f_4rzffRx5zvCKGiJfwD2ue6kZIqcYD-nU-h-Dh4m_EqReeDH29wdHgVTB4MvoQ_YELG5zGAnYJJeBEKJFOZ8ZHwMeESscHH3tyMMfuM__pyi69Kir8BL4ZY65a3foQM-ORhA6nAmCuMV7UDxpI_oT1XN8Dn3TxEv358v16ezM4ufp4uF2czwyQrM8G4dEoJxYyUiq-FtWvijDNta7RVWskWQPdCQs9azQSwpm1J40zfgxNW8kP0bdtbj3Y_QS7d4LOFEMwIccodp6JhjRZEvyHKKFNNfWtUbKM2xZwTuG6T_GDSQ0dJ9yiqq6K6F1HdTlTlvu5WTP0A6xfq2UwN0G3giY9TGutxXin9D3EMpfg</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Zeng, Jingjing</creator><creator>Wang, Changyi</creator><creator>Guo, Jiamin</creator><creator>Zhao, Tian</creator><creator>Wang, Han</creator><creator>Zhang, Ruijie</creator><creator>Pu, Liyuan</creator><creator>Yang, Huiqun</creator><creator>Liang, Jie</creator><creator>Han, Liyuan</creator><creator>Li, Lei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3329-3212</orcidid><orcidid>https://orcid.org/0000-0001-6536-1438</orcidid></search><sort><creationdate>20241206</creationdate><title>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</title><author>Zeng, Jingjing ; Wang, Changyi ; Guo, Jiamin ; Zhao, Tian ; Wang, Han ; Zhang, Ruijie ; Pu, Liyuan ; Yang, Huiqun ; Liang, Jie ; Han, Liyuan ; Li, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-5236f88582a6683d5ccd0fafa77a9c89867ee9b56eb27925e247704fabbef5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>Aged</topic><topic>artificial intelligence</topic><topic>biomarkers</topic><topic>Biomarkers - blood</topic><topic>Blood Proteins - analysis</topic><topic>body weight</topic><topic>caprolactam</topic><topic>Case-Control Studies</topic><topic>China</topic><topic>Computational Biology - methods</topic><topic>confidence interval</topic><topic>digestion</topic><topic>East Asian People</topic><topic>Female</topic><topic>Humans</topic><topic>hypertension</topic><topic>Hypertension - blood</topic><topic>Hypertension - complications</topic><topic>Male</topic><topic>mass spectrometry</topic><topic>metabolites</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>microfilaments</topic><topic>Middle Aged</topic><topic>Multiomics</topic><topic>proteome</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>risk</topic><topic>secretion</topic><topic>stroke</topic><topic>Stroke - blood</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Jingjing</creatorcontrib><creatorcontrib>Wang, Changyi</creatorcontrib><creatorcontrib>Guo, Jiamin</creatorcontrib><creatorcontrib>Zhao, Tian</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Pu, Liyuan</creatorcontrib><creatorcontrib>Yang, Huiqun</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Jingjing</au><au>Wang, Changyi</au><au>Guo, Jiamin</au><au>Zhao, Tian</au><au>Wang, Han</au><au>Zhang, Ruijie</au><au>Pu, Liyuan</au><au>Yang, Huiqun</au><au>Liang, Jie</au><au>Han, Liyuan</au><au>Li, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>5421</spage><epage>5437</epage><pages>5421-5437</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>We aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case–control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941–1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921–0.999).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39466185</pmid><doi>10.1021/acs.jproteome.4c00559</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3329-3212</orcidid><orcidid>https://orcid.org/0000-0001-6536-1438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2024-12, Vol.23 (12), p.5421-5437
issn 1535-3893
1535-3907
1535-3907
language eng
recordid cdi_proquest_miscellaneous_3154249509
source MEDLINE; American Chemical Society Journals
subjects absorption
Aged
artificial intelligence
biomarkers
Biomarkers - blood
Blood Proteins - analysis
body weight
caprolactam
Case-Control Studies
China
Computational Biology - methods
confidence interval
digestion
East Asian People
Female
Humans
hypertension
Hypertension - blood
Hypertension - complications
Male
mass spectrometry
metabolites
metabolomics
Metabolomics - methods
microfilaments
Middle Aged
Multiomics
proteome
proteomics
Proteomics - methods
risk
secretion
stroke
Stroke - blood
Support Vector Machine
title Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiomics%20Profiling%20of%20Plasma%20Reveals%20Molecular%20Alterations%20Prior%20to%20a%20Diagnosis%20with%20Stroke%20Among%20Chinese%20Hypertension%20Patients&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Zeng,%20Jingjing&rft.date=2024-12-06&rft.volume=23&rft.issue=12&rft.spage=5421&rft.epage=5437&rft.pages=5421-5437&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.4c00559&rft_dat=%3Cproquest_cross%3E3121284121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121284121&rft_id=info:pmid/39466185&rfr_iscdi=true