Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer

The motion of a polymer chain within a hypothetical confining tube gives rise to a segmental order parameter S b. This parameter is assessed via multiple-quantum (MQ) NMR experiments, providing a valuable molecule-level rheological observable. In both polymer networks and entangled melts, the order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2024-12, Vol.57 (23), p.11030-11041
Hauptverfasser: Shahsavan, Farhad, Keller, Jonas, Wilhelm, Manfred, Saalwächter, Kay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11041
container_issue 23
container_start_page 11030
container_title Macromolecules
container_volume 57
creator Shahsavan, Farhad
Keller, Jonas
Wilhelm, Manfred
Saalwächter, Kay
description The motion of a polymer chain within a hypothetical confining tube gives rise to a segmental order parameter S b. This parameter is assessed via multiple-quantum (MQ) NMR experiments, providing a valuable molecule-level rheological observable. In both polymer networks and entangled melts, the order parameter is proportional to the inverse of the number of segments between two covalent cross-links or physical entanglements. In entangled polymer networks, the entanglements have usually been considered as additional but temporary cross-links and the contribution of the physical and chemical constraints are assumed additive. Recent computer simulation results challenged this assumption for lowly cross-linked polymer networks; instead, S b was shown to scale with (N e N c)−1/2, N c and N e being the number of segments between cross-links and entanglements, respectively [Lang, M.; Sommer, J.-U., Phys. Rev. Lett. 2010, 104, 177801]. An experimental confirmation remains elusive due to challenges in distinguishing the contributions of entanglements and cross-links, as well as the long averaging time scales involved. In this study, we assess this correlation by examining chain dynamics in a monodisperse polyisoprene comb, utilized as a model system. To model chain dynamics in this system, the dynamic tube dilation model, originally designed for predicting the rheological behavior of star and branched polymers, has been modified to facilitate its application in the analysis of MQ NMR signals. We also address some of its shortcomings.
doi_str_mv 10.1021/acs.macromol.4c02015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154247963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154247963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-d840b8c2071610ac74ed4eb0ce44261c4253aace1496f827d0baae3b5ffe91ac3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzj4yCVl7TivI0TlIRW1EnCONs6mpErsYqdC_fe4arly2pFmZqX5GLsVMBMgxT1qPxtQOzvYfqY0SBDJGZuIREKU5HFyziYAUkWFLLJLduX9BkCIRMUT1pTWOepx7KzhjzT-EBn-TuuBzIg9X7qGHF-hw4HGoNA0fB4cs-7pEOELMuvxi3eGI3-zxjad35LzxEs71Hxl-_1A7ppdtNh7ujndKft8mn-UL9Fi-fxaPiwilAmMUZMrqHMtIROpANSZokZRDZqUkqnQSiYxoiahirTNZdZAjUhxnbQtFQJ1PGV3x79bZ7935Mdq6LymvkdDduerOGyWKivSOETVMRqoee-orbauG9DtKwHVAWoVoFZ_UKsT1FCDY-3gbuzOmbDn_8ov8E6ANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154247963</pqid></control><display><type>article</type><title>Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer</title><source>American Chemical Society Journals</source><creator>Shahsavan, Farhad ; Keller, Jonas ; Wilhelm, Manfred ; Saalwächter, Kay</creator><creatorcontrib>Shahsavan, Farhad ; Keller, Jonas ; Wilhelm, Manfred ; Saalwächter, Kay</creatorcontrib><description>The motion of a polymer chain within a hypothetical confining tube gives rise to a segmental order parameter S b. This parameter is assessed via multiple-quantum (MQ) NMR experiments, providing a valuable molecule-level rheological observable. In both polymer networks and entangled melts, the order parameter is proportional to the inverse of the number of segments between two covalent cross-links or physical entanglements. In entangled polymer networks, the entanglements have usually been considered as additional but temporary cross-links and the contribution of the physical and chemical constraints are assumed additive. Recent computer simulation results challenged this assumption for lowly cross-linked polymer networks; instead, S b was shown to scale with (N e N c)−1/2, N c and N e being the number of segments between cross-links and entanglements, respectively [Lang, M.; Sommer, J.-U., Phys. Rev. Lett. 2010, 104, 177801]. An experimental confirmation remains elusive due to challenges in distinguishing the contributions of entanglements and cross-links, as well as the long averaging time scales involved. In this study, we assess this correlation by examining chain dynamics in a monodisperse polyisoprene comb, utilized as a model system. To model chain dynamics in this system, the dynamic tube dilation model, originally designed for predicting the rheological behavior of star and branched polymers, has been modified to facilitate its application in the analysis of MQ NMR signals. We also address some of its shortcomings.</description><identifier>ISSN: 0024-9297</identifier><identifier>ISSN: 1520-5835</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.4c02015</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>computer simulation ; crosslinking ; polymers ; rheological properties</subject><ispartof>Macromolecules, 2024-12, Vol.57 (23), p.11030-11041</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a250t-d840b8c2071610ac74ed4eb0ce44261c4253aace1496f827d0baae3b5ffe91ac3</cites><orcidid>0000-0002-6246-4770 ; 0000-0003-2105-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.4c02015$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.4c02015$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Shahsavan, Farhad</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Saalwächter, Kay</creatorcontrib><title>Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The motion of a polymer chain within a hypothetical confining tube gives rise to a segmental order parameter S b. This parameter is assessed via multiple-quantum (MQ) NMR experiments, providing a valuable molecule-level rheological observable. In both polymer networks and entangled melts, the order parameter is proportional to the inverse of the number of segments between two covalent cross-links or physical entanglements. In entangled polymer networks, the entanglements have usually been considered as additional but temporary cross-links and the contribution of the physical and chemical constraints are assumed additive. Recent computer simulation results challenged this assumption for lowly cross-linked polymer networks; instead, S b was shown to scale with (N e N c)−1/2, N c and N e being the number of segments between cross-links and entanglements, respectively [Lang, M.; Sommer, J.-U., Phys. Rev. Lett. 2010, 104, 177801]. An experimental confirmation remains elusive due to challenges in distinguishing the contributions of entanglements and cross-links, as well as the long averaging time scales involved. In this study, we assess this correlation by examining chain dynamics in a monodisperse polyisoprene comb, utilized as a model system. To model chain dynamics in this system, the dynamic tube dilation model, originally designed for predicting the rheological behavior of star and branched polymers, has been modified to facilitate its application in the analysis of MQ NMR signals. We also address some of its shortcomings.</description><subject>computer simulation</subject><subject>crosslinking</subject><subject>polymers</subject><subject>rheological properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzj4yCVl7TivI0TlIRW1EnCONs6mpErsYqdC_fe4arly2pFmZqX5GLsVMBMgxT1qPxtQOzvYfqY0SBDJGZuIREKU5HFyziYAUkWFLLJLduX9BkCIRMUT1pTWOepx7KzhjzT-EBn-TuuBzIg9X7qGHF-hw4HGoNA0fB4cs-7pEOELMuvxi3eGI3-zxjad35LzxEs71Hxl-_1A7ppdtNh7ujndKft8mn-UL9Fi-fxaPiwilAmMUZMrqHMtIROpANSZokZRDZqUkqnQSiYxoiahirTNZdZAjUhxnbQtFQJ1PGV3x79bZ7935Mdq6LymvkdDduerOGyWKivSOETVMRqoee-orbauG9DtKwHVAWoVoFZ_UKsT1FCDY-3gbuzOmbDn_8ov8E6ANQ</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Shahsavan, Farhad</creator><creator>Keller, Jonas</creator><creator>Wilhelm, Manfred</creator><creator>Saalwächter, Kay</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6246-4770</orcidid><orcidid>https://orcid.org/0000-0003-2105-6946</orcidid></search><sort><creationdate>20241210</creationdate><title>Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer</title><author>Shahsavan, Farhad ; Keller, Jonas ; Wilhelm, Manfred ; Saalwächter, Kay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-d840b8c2071610ac74ed4eb0ce44261c4253aace1496f827d0baae3b5ffe91ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>computer simulation</topic><topic>crosslinking</topic><topic>polymers</topic><topic>rheological properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahsavan, Farhad</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Saalwächter, Kay</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahsavan, Farhad</au><au>Keller, Jonas</au><au>Wilhelm, Manfred</au><au>Saalwächter, Kay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2024-12-10</date><risdate>2024</risdate><volume>57</volume><issue>23</issue><spage>11030</spage><epage>11041</epage><pages>11030-11041</pages><issn>0024-9297</issn><issn>1520-5835</issn><eissn>1520-5835</eissn><abstract>The motion of a polymer chain within a hypothetical confining tube gives rise to a segmental order parameter S b. This parameter is assessed via multiple-quantum (MQ) NMR experiments, providing a valuable molecule-level rheological observable. In both polymer networks and entangled melts, the order parameter is proportional to the inverse of the number of segments between two covalent cross-links or physical entanglements. In entangled polymer networks, the entanglements have usually been considered as additional but temporary cross-links and the contribution of the physical and chemical constraints are assumed additive. Recent computer simulation results challenged this assumption for lowly cross-linked polymer networks; instead, S b was shown to scale with (N e N c)−1/2, N c and N e being the number of segments between cross-links and entanglements, respectively [Lang, M.; Sommer, J.-U., Phys. Rev. Lett. 2010, 104, 177801]. An experimental confirmation remains elusive due to challenges in distinguishing the contributions of entanglements and cross-links, as well as the long averaging time scales involved. In this study, we assess this correlation by examining chain dynamics in a monodisperse polyisoprene comb, utilized as a model system. To model chain dynamics in this system, the dynamic tube dilation model, originally designed for predicting the rheological behavior of star and branched polymers, has been modified to facilitate its application in the analysis of MQ NMR signals. We also address some of its shortcomings.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.4c02015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6246-4770</orcidid><orcidid>https://orcid.org/0000-0003-2105-6946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2024-12, Vol.57 (23), p.11030-11041
issn 0024-9297
1520-5835
1520-5835
language eng
recordid cdi_proquest_miscellaneous_3154247963
source American Chemical Society Journals
subjects computer simulation
crosslinking
polymers
rheological properties
title Correlation Between Segmental Order Parameter and Entanglement Length in a Monodisperse Comb Polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Between%20Segmental%20Order%20Parameter%20and%20Entanglement%20Length%20in%20a%20Monodisperse%20Comb%20Polymer&rft.jtitle=Macromolecules&rft.au=Shahsavan,%20Farhad&rft.date=2024-12-10&rft.volume=57&rft.issue=23&rft.spage=11030&rft.epage=11041&rft.pages=11030-11041&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.4c02015&rft_dat=%3Cproquest_cross%3E3154247963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154247963&rft_id=info:pmid/&rfr_iscdi=true