Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach

Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2024-12, Vol.83 (24), p.677-677, Article 677
Hauptverfasser: Shankar, S. Vishnu, Kumaraperumal, R., Radha, M., Kannan, Balaji, Patil, S. G., Vanitha, G., Raj, M. Nivas, Athira, M., Ananthakrishnan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 24
container_start_page 677
container_title Environmental earth sciences
container_volume 83
creator Shankar, S. Vishnu
Kumaraperumal, R.
Radha, M.
Kannan, Balaji
Patil, S. G.
Vanitha, G.
Raj, M. Nivas
Athira, M.
Ananthakrishnan, S.
description Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.
doi_str_mv 10.1007/s12665-024-11985-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154246861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134415255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-716c3bff2cd203aab4d67b970734b0713031347e66690e453555bf248e91329f3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouKz7BTwFvHip5n-boyy6Cgte9BzSbFKztM2apAe_vakrCh6cywzM770ZeABcYnSDEapvEyZC8AoRVmEsG17xE7DAjRCVIFKe_swNOgerlPaoFMVUIrEA-40dbdTZhxEGB3e-81n3MAXfw0EfDn7soAsRroMfWp1DtIVJOXqTE5zSvB6mPvsxDL7o-tCVrTcw2i7alGbb4hKDNm8X4MzpPtnVd1-C14f7l_VjtX3ePK3vtpUhlOaqxsLQ1jlidgRRrVu2E3Ura1RT1qIa0_l3VlshhESWcco5bx1hjZWYEunoElwffcvZ98mmrAafjO17PdowJUUxZ4SJRuCCXv1B92GKY_lOzUcY5oTzQpEjZWJIKVqnDtEPOn4ojNScgDomoEoC6isBNYvoUZQKPHY2_lr_o_oEeGuJHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134415255</pqid></control><display><type>article</type><title>Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shankar, S. Vishnu ; Kumaraperumal, R. ; Radha, M. ; Kannan, Balaji ; Patil, S. G. ; Vanitha, G. ; Raj, M. Nivas ; Athira, M. ; Ananthakrishnan, S.</creator><creatorcontrib>Shankar, S. Vishnu ; Kumaraperumal, R. ; Radha, M. ; Kannan, Balaji ; Patil, S. G. ; Vanitha, G. ; Raj, M. Nivas ; Athira, M. ; Ananthakrishnan, S.</creatorcontrib><description>Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-024-11985-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Agricultural practices ; Biogeosciences ; Data base management systems ; Decision making ; Dependent variables ; Digital mapping ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Geochemistry ; Geology ; Haplustalfs ; Hydrology/Water Resources ; Independent variables ; India ; Information systems ; Land area ; Land management ; Mapping ; Natural resources ; Original Article ; Regression analysis ; Soil ; Soil classification ; soil map ; Soil mapping ; Soil maps ; Statistical analysis ; Statistics ; Subgroups ; Sustainability management ; sustainable land management ; Terrestrial Pollution ; Ustorthents ; Vertisols</subject><ispartof>Environmental earth sciences, 2024-12, Vol.83 (24), p.677-677, Article 677</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-716c3bff2cd203aab4d67b970734b0713031347e66690e453555bf248e91329f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-024-11985-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-024-11985-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shankar, S. Vishnu</creatorcontrib><creatorcontrib>Kumaraperumal, R.</creatorcontrib><creatorcontrib>Radha, M.</creatorcontrib><creatorcontrib>Kannan, Balaji</creatorcontrib><creatorcontrib>Patil, S. G.</creatorcontrib><creatorcontrib>Vanitha, G.</creatorcontrib><creatorcontrib>Raj, M. Nivas</creatorcontrib><creatorcontrib>Athira, M.</creatorcontrib><creatorcontrib>Ananthakrishnan, S.</creatorcontrib><title>Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.</description><subject>Accuracy</subject><subject>Agricultural practices</subject><subject>Biogeosciences</subject><subject>Data base management systems</subject><subject>Decision making</subject><subject>Dependent variables</subject><subject>Digital mapping</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Haplustalfs</subject><subject>Hydrology/Water Resources</subject><subject>Independent variables</subject><subject>India</subject><subject>Information systems</subject><subject>Land area</subject><subject>Land management</subject><subject>Mapping</subject><subject>Natural resources</subject><subject>Original Article</subject><subject>Regression analysis</subject><subject>Soil</subject><subject>Soil classification</subject><subject>soil map</subject><subject>Soil mapping</subject><subject>Soil maps</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Subgroups</subject><subject>Sustainability management</subject><subject>sustainable land management</subject><subject>Terrestrial Pollution</subject><subject>Ustorthents</subject><subject>Vertisols</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouKz7BTwFvHip5n-boyy6Cgte9BzSbFKztM2apAe_vakrCh6cywzM770ZeABcYnSDEapvEyZC8AoRVmEsG17xE7DAjRCVIFKe_swNOgerlPaoFMVUIrEA-40dbdTZhxEGB3e-81n3MAXfw0EfDn7soAsRroMfWp1DtIVJOXqTE5zSvB6mPvsxDL7o-tCVrTcw2i7alGbb4hKDNm8X4MzpPtnVd1-C14f7l_VjtX3ePK3vtpUhlOaqxsLQ1jlidgRRrVu2E3Ura1RT1qIa0_l3VlshhESWcco5bx1hjZWYEunoElwffcvZ98mmrAafjO17PdowJUUxZ4SJRuCCXv1B92GKY_lOzUcY5oTzQpEjZWJIKVqnDtEPOn4ojNScgDomoEoC6isBNYvoUZQKPHY2_lr_o_oEeGuJHw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Shankar, S. Vishnu</creator><creator>Kumaraperumal, R.</creator><creator>Radha, M.</creator><creator>Kannan, Balaji</creator><creator>Patil, S. G.</creator><creator>Vanitha, G.</creator><creator>Raj, M. Nivas</creator><creator>Athira, M.</creator><creator>Ananthakrishnan, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241201</creationdate><title>Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach</title><author>Shankar, S. Vishnu ; Kumaraperumal, R. ; Radha, M. ; Kannan, Balaji ; Patil, S. G. ; Vanitha, G. ; Raj, M. Nivas ; Athira, M. ; Ananthakrishnan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-716c3bff2cd203aab4d67b970734b0713031347e66690e453555bf248e91329f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural practices</topic><topic>Biogeosciences</topic><topic>Data base management systems</topic><topic>Decision making</topic><topic>Dependent variables</topic><topic>Digital mapping</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Haplustalfs</topic><topic>Hydrology/Water Resources</topic><topic>Independent variables</topic><topic>India</topic><topic>Information systems</topic><topic>Land area</topic><topic>Land management</topic><topic>Mapping</topic><topic>Natural resources</topic><topic>Original Article</topic><topic>Regression analysis</topic><topic>Soil</topic><topic>Soil classification</topic><topic>soil map</topic><topic>Soil mapping</topic><topic>Soil maps</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Subgroups</topic><topic>Sustainability management</topic><topic>sustainable land management</topic><topic>Terrestrial Pollution</topic><topic>Ustorthents</topic><topic>Vertisols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, S. Vishnu</creatorcontrib><creatorcontrib>Kumaraperumal, R.</creatorcontrib><creatorcontrib>Radha, M.</creatorcontrib><creatorcontrib>Kannan, Balaji</creatorcontrib><creatorcontrib>Patil, S. G.</creatorcontrib><creatorcontrib>Vanitha, G.</creatorcontrib><creatorcontrib>Raj, M. Nivas</creatorcontrib><creatorcontrib>Athira, M.</creatorcontrib><creatorcontrib>Ananthakrishnan, S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, S. Vishnu</au><au>Kumaraperumal, R.</au><au>Radha, M.</au><au>Kannan, Balaji</au><au>Patil, S. G.</au><au>Vanitha, G.</au><au>Raj, M. Nivas</au><au>Athira, M.</au><au>Ananthakrishnan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>83</volume><issue>24</issue><spage>677</spage><epage>677</epage><pages>677-677</pages><artnum>677</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-024-11985-5</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2024-12, Vol.83 (24), p.677-677, Article 677
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_miscellaneous_3154246861
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Agricultural practices
Biogeosciences
Data base management systems
Decision making
Dependent variables
Digital mapping
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Geochemistry
Geology
Haplustalfs
Hydrology/Water Resources
Independent variables
India
Information systems
Land area
Land management
Mapping
Natural resources
Original Article
Regression analysis
Soil
Soil classification
soil map
Soil mapping
Soil maps
Statistical analysis
Statistics
Subgroups
Sustainability management
sustainable land management
Terrestrial Pollution
Ustorthents
Vertisols
title Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20digital%20soil%20mapping%20for%20Coimbatore%20districts%20using%20multinomial%20logistic%20regression%20approach&rft.jtitle=Environmental%20earth%20sciences&rft.au=Shankar,%20S.%20Vishnu&rft.date=2024-12-01&rft.volume=83&rft.issue=24&rft.spage=677&rft.epage=677&rft.pages=677-677&rft.artnum=677&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-024-11985-5&rft_dat=%3Cproquest_cross%3E3134415255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134415255&rft_id=info:pmid/&rfr_iscdi=true