Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration

Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-11, Vol.16 (47), p.65378-65393
Hauptverfasser: Shaikh, Shazia, Mehrotra, Shreya, van Bochove, Bas, Teotia, Arun Kumar, Singh, Prerna, Laurén, Isabella, Lindfors, Nina C., Seppälä, Jukka, Kumar, Ashok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65393
container_issue 47
container_start_page 65378
container_title ACS applied materials & interfaces
container_volume 16
creator Shaikh, Shazia
Mehrotra, Shreya
van Bochove, Bas
Teotia, Arun Kumar
Singh, Prerna
Laurén, Isabella
Lindfors, Nina C.
Seppälä, Jukka
Kumar, Ashok
description Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite resins with poly­(trimethylene carbonate) (PTMC) containing a high percentage of biodegradable bioactive strontium-substituted nanohydroxyapatite (SrHA, size 30–70 nm). These photocurable resins have then been employed to develop high-surface-area 3D-printed bone substitutes using the digital light processing (DLP) technique. To enhance the surface area of the 3D-printed substitute, cryogels alone and functionalized with bioactive components of bone morphogenetic protein (BMP) and zoledronic acid (ZA) were filled within the 3D-printed scaffold/substitute. The scaffolds were tested in vitro for biocompatibility and functionality in vivo in two therapeutically relevant rat models with large bone defects (4 mm). The porosities of 3D printed scaffolds were found to be 60.1 ± 0.9%, 72.9 ± 0.5%, and 74.3 ± 1.6% for PTMC, PTMC-HA, and PTMC-SrHA, respectively, which is in the range of cancellous bone (50–95%). The thermogravimetric analysis demonstrated the fabrication of 3D printed composites with HA and SrHA concentrations of 51.5 and 57.4 wt %, respectively, in the PTMC matrix. The tensile Young’s modulus (E), compressive moduli, and wettability increased post incorporation of SrHA and HA in the PTMC matrix. In vitro and in vivo results revealed that SrHA integrated into the PTMC matrix exhibited good physicochemical and biological properties. Furthermore, the osteoactive molecule-functionalized 3D printed composite scaffolds were found to have an adequate osteoconductive and osteoinductive surface that has shown increased bone regeneration and defect repair in both tibial and cranial bone defects. Our findings thus support the use of PTMC-SrHA composites as next-generation patient-specific synthetic bioactive biodegradable bone substitutes.
doi_str_mv 10.1021/acsami.4c16195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154246178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129688391</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-84ae9f5bb808bcc0930bb6436e89d9190d1f6372a8af08f10dae73139c55b6643</originalsourceid><addsrcrecordid>eNqN0c2LEzEYBvAgiruuXj3KHEWYmkw-mhzdrl-wqFg9D28mb2qWmaQmM2L_e1Na9yZ4Sgi_5znkIeQ5oytGO_YahgJTWImBKWbkA3LJjBCt7mT38P4uxAV5UsodpYp3VD4mF9xIqQRTl-TXds4pzmGZ2u1iyxzmZUbXfIKYfhxcTr8PsIf6is2mMggxxF1zHZLDXQYHdsSG3zRfcojH2CZN-1SOejuA92l0pfEpN9cpYvMVdxgx17YUn5JHHsaCz87nFfn-7u23zYf29vP7j5s3ty10Qs-tFoDGS2s11XYYqOHUWiW4Qm2cYYY65hVfd6DBU-0ZdYBrzrgZpLSqwivy8tS7z-nngmXup1AGHEeImJbScyZFJxRb6_-gnVFac8MqXZ3okFMpGX2_z2GCfOgZ7Y-z9KdZ-vMsNfDi3L3YCd09_7tDBa9OoAb7u7TkWH_lX21_ALAFmVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129688391</pqid></control><display><type>article</type><title>Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration</title><source>ACS Publications</source><creator>Shaikh, Shazia ; Mehrotra, Shreya ; van Bochove, Bas ; Teotia, Arun Kumar ; Singh, Prerna ; Laurén, Isabella ; Lindfors, Nina C. ; Seppälä, Jukka ; Kumar, Ashok</creator><creatorcontrib>Shaikh, Shazia ; Mehrotra, Shreya ; van Bochove, Bas ; Teotia, Arun Kumar ; Singh, Prerna ; Laurén, Isabella ; Lindfors, Nina C. ; Seppälä, Jukka ; Kumar, Ashok</creatorcontrib><description>Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite resins with poly­(trimethylene carbonate) (PTMC) containing a high percentage of biodegradable bioactive strontium-substituted nanohydroxyapatite (SrHA, size 30–70 nm). These photocurable resins have then been employed to develop high-surface-area 3D-printed bone substitutes using the digital light processing (DLP) technique. To enhance the surface area of the 3D-printed substitute, cryogels alone and functionalized with bioactive components of bone morphogenetic protein (BMP) and zoledronic acid (ZA) were filled within the 3D-printed scaffold/substitute. The scaffolds were tested in vitro for biocompatibility and functionality in vivo in two therapeutically relevant rat models with large bone defects (4 mm). The porosities of 3D printed scaffolds were found to be 60.1 ± 0.9%, 72.9 ± 0.5%, and 74.3 ± 1.6% for PTMC, PTMC-HA, and PTMC-SrHA, respectively, which is in the range of cancellous bone (50–95%). The thermogravimetric analysis demonstrated the fabrication of 3D printed composites with HA and SrHA concentrations of 51.5 and 57.4 wt %, respectively, in the PTMC matrix. The tensile Young’s modulus (E), compressive moduli, and wettability increased post incorporation of SrHA and HA in the PTMC matrix. In vitro and in vivo results revealed that SrHA integrated into the PTMC matrix exhibited good physicochemical and biological properties. Furthermore, the osteoactive molecule-functionalized 3D printed composite scaffolds were found to have an adequate osteoconductive and osteoinductive surface that has shown increased bone regeneration and defect repair in both tibial and cranial bone defects. Our findings thus support the use of PTMC-SrHA composites as next-generation patient-specific synthetic bioactive biodegradable bone substitutes.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c16195</identifier><identifier>PMID: 39556416</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials ; autografting ; biocompatibility ; biodegradability ; bone morphogenetic proteins ; bone substitutes ; carbonates ; cryogels ; rats ; surface area ; thermogravimetry ; three-dimensional printing ; tibia ; wettability</subject><ispartof>ACS applied materials &amp; interfaces, 2024-11, Vol.16 (47), p.65378-65393</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-84ae9f5bb808bcc0930bb6436e89d9190d1f6372a8af08f10dae73139c55b6643</cites><orcidid>0000-0002-4910-9440 ; 0000-0002-9265-3505 ; 0000-0001-7943-3121 ; 0000-0003-0031-6155 ; 0000-0002-9376-9286 ; 0000-0001-5233-4094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c16195$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c16195$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39556416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaikh, Shazia</creatorcontrib><creatorcontrib>Mehrotra, Shreya</creatorcontrib><creatorcontrib>van Bochove, Bas</creatorcontrib><creatorcontrib>Teotia, Arun Kumar</creatorcontrib><creatorcontrib>Singh, Prerna</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Lindfors, Nina C.</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><title>Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite resins with poly­(trimethylene carbonate) (PTMC) containing a high percentage of biodegradable bioactive strontium-substituted nanohydroxyapatite (SrHA, size 30–70 nm). These photocurable resins have then been employed to develop high-surface-area 3D-printed bone substitutes using the digital light processing (DLP) technique. To enhance the surface area of the 3D-printed substitute, cryogels alone and functionalized with bioactive components of bone morphogenetic protein (BMP) and zoledronic acid (ZA) were filled within the 3D-printed scaffold/substitute. The scaffolds were tested in vitro for biocompatibility and functionality in vivo in two therapeutically relevant rat models with large bone defects (4 mm). The porosities of 3D printed scaffolds were found to be 60.1 ± 0.9%, 72.9 ± 0.5%, and 74.3 ± 1.6% for PTMC, PTMC-HA, and PTMC-SrHA, respectively, which is in the range of cancellous bone (50–95%). The thermogravimetric analysis demonstrated the fabrication of 3D printed composites with HA and SrHA concentrations of 51.5 and 57.4 wt %, respectively, in the PTMC matrix. The tensile Young’s modulus (E), compressive moduli, and wettability increased post incorporation of SrHA and HA in the PTMC matrix. In vitro and in vivo results revealed that SrHA integrated into the PTMC matrix exhibited good physicochemical and biological properties. Furthermore, the osteoactive molecule-functionalized 3D printed composite scaffolds were found to have an adequate osteoconductive and osteoinductive surface that has shown increased bone regeneration and defect repair in both tibial and cranial bone defects. Our findings thus support the use of PTMC-SrHA composites as next-generation patient-specific synthetic bioactive biodegradable bone substitutes.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>autografting</subject><subject>biocompatibility</subject><subject>biodegradability</subject><subject>bone morphogenetic proteins</subject><subject>bone substitutes</subject><subject>carbonates</subject><subject>cryogels</subject><subject>rats</subject><subject>surface area</subject><subject>thermogravimetry</subject><subject>three-dimensional printing</subject><subject>tibia</subject><subject>wettability</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqN0c2LEzEYBvAgiruuXj3KHEWYmkw-mhzdrl-wqFg9D28mb2qWmaQmM2L_e1Na9yZ4Sgi_5znkIeQ5oytGO_YahgJTWImBKWbkA3LJjBCt7mT38P4uxAV5UsodpYp3VD4mF9xIqQRTl-TXds4pzmGZ2u1iyxzmZUbXfIKYfhxcTr8PsIf6is2mMggxxF1zHZLDXQYHdsSG3zRfcojH2CZN-1SOejuA92l0pfEpN9cpYvMVdxgx17YUn5JHHsaCz87nFfn-7u23zYf29vP7j5s3ty10Qs-tFoDGS2s11XYYqOHUWiW4Qm2cYYY65hVfd6DBU-0ZdYBrzrgZpLSqwivy8tS7z-nngmXup1AGHEeImJbScyZFJxRb6_-gnVFac8MqXZ3okFMpGX2_z2GCfOgZ7Y-z9KdZ-vMsNfDi3L3YCd09_7tDBa9OoAb7u7TkWH_lX21_ALAFmVo</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Shaikh, Shazia</creator><creator>Mehrotra, Shreya</creator><creator>van Bochove, Bas</creator><creator>Teotia, Arun Kumar</creator><creator>Singh, Prerna</creator><creator>Laurén, Isabella</creator><creator>Lindfors, Nina C.</creator><creator>Seppälä, Jukka</creator><creator>Kumar, Ashok</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4910-9440</orcidid><orcidid>https://orcid.org/0000-0002-9265-3505</orcidid><orcidid>https://orcid.org/0000-0001-7943-3121</orcidid><orcidid>https://orcid.org/0000-0003-0031-6155</orcidid><orcidid>https://orcid.org/0000-0002-9376-9286</orcidid><orcidid>https://orcid.org/0000-0001-5233-4094</orcidid></search><sort><creationdate>20241127</creationdate><title>Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration</title><author>Shaikh, Shazia ; Mehrotra, Shreya ; van Bochove, Bas ; Teotia, Arun Kumar ; Singh, Prerna ; Laurén, Isabella ; Lindfors, Nina C. ; Seppälä, Jukka ; Kumar, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-84ae9f5bb808bcc0930bb6436e89d9190d1f6372a8af08f10dae73139c55b6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>autografting</topic><topic>biocompatibility</topic><topic>biodegradability</topic><topic>bone morphogenetic proteins</topic><topic>bone substitutes</topic><topic>carbonates</topic><topic>cryogels</topic><topic>rats</topic><topic>surface area</topic><topic>thermogravimetry</topic><topic>three-dimensional printing</topic><topic>tibia</topic><topic>wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Shazia</creatorcontrib><creatorcontrib>Mehrotra, Shreya</creatorcontrib><creatorcontrib>van Bochove, Bas</creatorcontrib><creatorcontrib>Teotia, Arun Kumar</creatorcontrib><creatorcontrib>Singh, Prerna</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Lindfors, Nina C.</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Shazia</au><au>Mehrotra, Shreya</au><au>van Bochove, Bas</au><au>Teotia, Arun Kumar</au><au>Singh, Prerna</au><au>Laurén, Isabella</au><au>Lindfors, Nina C.</au><au>Seppälä, Jukka</au><au>Kumar, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>16</volume><issue>47</issue><spage>65378</spage><epage>65393</epage><pages>65378-65393</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite resins with poly­(trimethylene carbonate) (PTMC) containing a high percentage of biodegradable bioactive strontium-substituted nanohydroxyapatite (SrHA, size 30–70 nm). These photocurable resins have then been employed to develop high-surface-area 3D-printed bone substitutes using the digital light processing (DLP) technique. To enhance the surface area of the 3D-printed substitute, cryogels alone and functionalized with bioactive components of bone morphogenetic protein (BMP) and zoledronic acid (ZA) were filled within the 3D-printed scaffold/substitute. The scaffolds were tested in vitro for biocompatibility and functionality in vivo in two therapeutically relevant rat models with large bone defects (4 mm). The porosities of 3D printed scaffolds were found to be 60.1 ± 0.9%, 72.9 ± 0.5%, and 74.3 ± 1.6% for PTMC, PTMC-HA, and PTMC-SrHA, respectively, which is in the range of cancellous bone (50–95%). The thermogravimetric analysis demonstrated the fabrication of 3D printed composites with HA and SrHA concentrations of 51.5 and 57.4 wt %, respectively, in the PTMC matrix. The tensile Young’s modulus (E), compressive moduli, and wettability increased post incorporation of SrHA and HA in the PTMC matrix. In vitro and in vivo results revealed that SrHA integrated into the PTMC matrix exhibited good physicochemical and biological properties. Furthermore, the osteoactive molecule-functionalized 3D printed composite scaffolds were found to have an adequate osteoconductive and osteoinductive surface that has shown increased bone regeneration and defect repair in both tibial and cranial bone defects. Our findings thus support the use of PTMC-SrHA composites as next-generation patient-specific synthetic bioactive biodegradable bone substitutes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39556416</pmid><doi>10.1021/acsami.4c16195</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4910-9440</orcidid><orcidid>https://orcid.org/0000-0002-9265-3505</orcidid><orcidid>https://orcid.org/0000-0001-7943-3121</orcidid><orcidid>https://orcid.org/0000-0003-0031-6155</orcidid><orcidid>https://orcid.org/0000-0002-9376-9286</orcidid><orcidid>https://orcid.org/0000-0001-5233-4094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-11, Vol.16 (47), p.65378-65393
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3154246178
source ACS Publications
subjects Applications of Polymer, Composite, and Coating Materials
autografting
biocompatibility
biodegradability
bone morphogenetic proteins
bone substitutes
carbonates
cryogels
rats
surface area
thermogravimetry
three-dimensional printing
tibia
wettability
title Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strontium-Substituted%20Nanohydroxyapatite%20Containing%20Biodegradable%203D%20Printed%20Composite%20Scaffolds%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shaikh,%20Shazia&rft.date=2024-11-27&rft.volume=16&rft.issue=47&rft.spage=65378&rft.epage=65393&rft.pages=65378-65393&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c16195&rft_dat=%3Cproquest_cross%3E3129688391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129688391&rft_id=info:pmid/39556416&rfr_iscdi=true