Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry
The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67730-67742 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67742 |
---|---|
container_issue | 49 |
container_start_page | 67730 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Wang, Zhongling Kuang, Jason Rodriguez-Campos, Armando Cao, Chuntian Kingan, Arun Barry, Patrick J. Hill, Ryan C. Arnot, David J. Christianne, Adora Bock, David C. Du, Yonghua Bak, Seong Min Ma, Lu Yang, Dali Tayal, Akhil Drakopoulos, Michael Zhong, Zhong Vo, Nghia T. Kisslinger, Kim Tong, Xiao Takeuchi, Esther S. Carbone, Matthew R. Lu, Deyu Wang, Lei Yan, Shan Takeuchi, Kenneth J. Marschilok, Amy C. |
description | The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase. |
doi_str_mv | 10.1021/acsami.4c14388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154241772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131850393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqVw5Yh8LEi7tWM7m3Br06VdqQgkCgcu0cQeb1w5cbGdSnknHpIsu_SG1JPn8H3_yPNn2VtGl4zm7AxUhN4uhWKCl-Wz7JhVQizKXObPH2chjrJXMd5RWvCcypfZEa_kqqC8OM5-r92orIZkhy1JHZJLG1UHYYvkAjt4sD4Qb8j5rxH9GMlPOyjybXRmDOQCUsJgMRI7_FW_Bow4KNwJn72bWo3D2J9ufrwndQdO-S0OViOpIYGbYvpIbmerDjZZBc6maSduhjnUgLLgyNqhSsGrDnsbU5heZy8MuIhvDu9J9v3T-ra-Xtx8udrU5zcLyEWZFpoVJQdJDWs1A6EZGlYVZVu1QgiquYFWy0LI3BgpZCGV0rrViuq2rLCElp9kp_vc--Dnj8fUzPsVOgfD7goNZ1Lkgq1W-RNQzkpJecVndLlHVfAxBjTNfbA9hKlhtNmV2ezLbA5lzsK7Q_bY9qgf8X_tzcCHPTCLzZ0fwzBf5X9pfwCSJK0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131850393</pqid></control><display><type>article</type><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><source>ACS Publications</source><creator>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</creator><creatorcontrib>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</creatorcontrib><description>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c14388</identifier><identifier>PMID: 39576036</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>batteries ; catalysts ; electrochemistry ; energy density ; Energy, Environmental, and Catalysis Applications ; energy-dispersive X-ray analysis ; fluorescence ; molybdenum ; Raman spectroscopy ; species ; sulfides ; sulfur ; tomography ; transmission electron microscopy ; X-radiation ; X-ray absorption spectroscopy ; X-ray diffraction ; zinc</subject><ispartof>ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67730-67742</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</cites><orcidid>0000-0003-2655-045X ; 0000-0003-4351-6085 ; 0000-0002-3683-7377 ; 0000-0002-9715-9100 ; 0000-0001-8518-1047 ; 0000-0003-0620-6408 ; 0000-0001-8129-444X ; 0000-0002-1138-3655 ; 0000-0002-7330-3091 ; 0000-0001-9174-0474 ; 0000-0003-3126-6189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c14388$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c14388$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39576036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhongling</creatorcontrib><creatorcontrib>Kuang, Jason</creatorcontrib><creatorcontrib>Rodriguez-Campos, Armando</creatorcontrib><creatorcontrib>Cao, Chuntian</creatorcontrib><creatorcontrib>Kingan, Arun</creatorcontrib><creatorcontrib>Barry, Patrick J.</creatorcontrib><creatorcontrib>Hill, Ryan C.</creatorcontrib><creatorcontrib>Arnot, David J.</creatorcontrib><creatorcontrib>Christianne, Adora</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Du, Yonghua</creatorcontrib><creatorcontrib>Bak, Seong Min</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Dali</creatorcontrib><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Drakopoulos, Michael</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Vo, Nghia T.</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Carbone, Matthew R.</creatorcontrib><creatorcontrib>Lu, Deyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Shan</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</description><subject>batteries</subject><subject>catalysts</subject><subject>electrochemistry</subject><subject>energy density</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>energy-dispersive X-ray analysis</subject><subject>fluorescence</subject><subject>molybdenum</subject><subject>Raman spectroscopy</subject><subject>species</subject><subject>sulfides</subject><subject>sulfur</subject><subject>tomography</subject><subject>transmission electron microscopy</subject><subject>X-radiation</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><subject>zinc</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEoqVw5Yh8LEi7tWM7m3Br06VdqQgkCgcu0cQeb1w5cbGdSnknHpIsu_SG1JPn8H3_yPNn2VtGl4zm7AxUhN4uhWKCl-Wz7JhVQizKXObPH2chjrJXMd5RWvCcypfZEa_kqqC8OM5-r92orIZkhy1JHZJLG1UHYYvkAjt4sD4Qb8j5rxH9GMlPOyjybXRmDOQCUsJgMRI7_FW_Bow4KNwJn72bWo3D2J9ufrwndQdO-S0OViOpIYGbYvpIbmerDjZZBc6maSduhjnUgLLgyNqhSsGrDnsbU5heZy8MuIhvDu9J9v3T-ra-Xtx8udrU5zcLyEWZFpoVJQdJDWs1A6EZGlYVZVu1QgiquYFWy0LI3BgpZCGV0rrViuq2rLCElp9kp_vc--Dnj8fUzPsVOgfD7goNZ1Lkgq1W-RNQzkpJecVndLlHVfAxBjTNfbA9hKlhtNmV2ezLbA5lzsK7Q_bY9qgf8X_tzcCHPTCLzZ0fwzBf5X9pfwCSJK0p</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Wang, Zhongling</creator><creator>Kuang, Jason</creator><creator>Rodriguez-Campos, Armando</creator><creator>Cao, Chuntian</creator><creator>Kingan, Arun</creator><creator>Barry, Patrick J.</creator><creator>Hill, Ryan C.</creator><creator>Arnot, David J.</creator><creator>Christianne, Adora</creator><creator>Bock, David C.</creator><creator>Du, Yonghua</creator><creator>Bak, Seong Min</creator><creator>Ma, Lu</creator><creator>Yang, Dali</creator><creator>Tayal, Akhil</creator><creator>Drakopoulos, Michael</creator><creator>Zhong, Zhong</creator><creator>Vo, Nghia T.</creator><creator>Kisslinger, Kim</creator><creator>Tong, Xiao</creator><creator>Takeuchi, Esther S.</creator><creator>Carbone, Matthew R.</creator><creator>Lu, Deyu</creator><creator>Wang, Lei</creator><creator>Yan, Shan</creator><creator>Takeuchi, Kenneth J.</creator><creator>Marschilok, Amy C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2655-045X</orcidid><orcidid>https://orcid.org/0000-0003-4351-6085</orcidid><orcidid>https://orcid.org/0000-0002-3683-7377</orcidid><orcidid>https://orcid.org/0000-0002-9715-9100</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0003-0620-6408</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-1138-3655</orcidid><orcidid>https://orcid.org/0000-0002-7330-3091</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0003-3126-6189</orcidid></search><sort><creationdate>20241211</creationdate><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><author>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>batteries</topic><topic>catalysts</topic><topic>electrochemistry</topic><topic>energy density</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>energy-dispersive X-ray analysis</topic><topic>fluorescence</topic><topic>molybdenum</topic><topic>Raman spectroscopy</topic><topic>species</topic><topic>sulfides</topic><topic>sulfur</topic><topic>tomography</topic><topic>transmission electron microscopy</topic><topic>X-radiation</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhongling</creatorcontrib><creatorcontrib>Kuang, Jason</creatorcontrib><creatorcontrib>Rodriguez-Campos, Armando</creatorcontrib><creatorcontrib>Cao, Chuntian</creatorcontrib><creatorcontrib>Kingan, Arun</creatorcontrib><creatorcontrib>Barry, Patrick J.</creatorcontrib><creatorcontrib>Hill, Ryan C.</creatorcontrib><creatorcontrib>Arnot, David J.</creatorcontrib><creatorcontrib>Christianne, Adora</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Du, Yonghua</creatorcontrib><creatorcontrib>Bak, Seong Min</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Dali</creatorcontrib><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Drakopoulos, Michael</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Vo, Nghia T.</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Carbone, Matthew R.</creatorcontrib><creatorcontrib>Lu, Deyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Shan</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhongling</au><au>Kuang, Jason</au><au>Rodriguez-Campos, Armando</au><au>Cao, Chuntian</au><au>Kingan, Arun</au><au>Barry, Patrick J.</au><au>Hill, Ryan C.</au><au>Arnot, David J.</au><au>Christianne, Adora</au><au>Bock, David C.</au><au>Du, Yonghua</au><au>Bak, Seong Min</au><au>Ma, Lu</au><au>Yang, Dali</au><au>Tayal, Akhil</au><au>Drakopoulos, Michael</au><au>Zhong, Zhong</au><au>Vo, Nghia T.</au><au>Kisslinger, Kim</au><au>Tong, Xiao</au><au>Takeuchi, Esther S.</au><au>Carbone, Matthew R.</au><au>Lu, Deyu</au><au>Wang, Lei</au><au>Yan, Shan</au><au>Takeuchi, Kenneth J.</au><au>Marschilok, Amy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>67730</spage><epage>67742</epage><pages>67730-67742</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39576036</pmid><doi>10.1021/acsami.4c14388</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2655-045X</orcidid><orcidid>https://orcid.org/0000-0003-4351-6085</orcidid><orcidid>https://orcid.org/0000-0002-3683-7377</orcidid><orcidid>https://orcid.org/0000-0002-9715-9100</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0003-0620-6408</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-1138-3655</orcidid><orcidid>https://orcid.org/0000-0002-7330-3091</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0003-3126-6189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67730-67742 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154241772 |
source | ACS Publications |
subjects | batteries catalysts electrochemistry energy density Energy, Environmental, and Catalysis Applications energy-dispersive X-ray analysis fluorescence molybdenum Raman spectroscopy species sulfides sulfur tomography transmission electron microscopy X-radiation X-ray absorption spectroscopy X-ray diffraction zinc |
title | Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Discharge%20Behavior%20of%20Aqueous%20Zinc%20Sulfur%20Batteries%20in%20the%20Presence%20of%20Molybdenum(IV)%20Chalcogenide%20Catalyst:%20The%20Criticality%20of%20Interfacial%20Electrochemistry&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Zhongling&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=67730&rft.epage=67742&rft.pages=67730-67742&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c14388&rft_dat=%3Cproquest_cross%3E3131850393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131850393&rft_id=info:pmid/39576036&rfr_iscdi=true |