Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry

The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum­(IV) sulfide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67730-67742
Hauptverfasser: Wang, Zhongling, Kuang, Jason, Rodriguez-Campos, Armando, Cao, Chuntian, Kingan, Arun, Barry, Patrick J., Hill, Ryan C., Arnot, David J., Christianne, Adora, Bock, David C., Du, Yonghua, Bak, Seong Min, Ma, Lu, Yang, Dali, Tayal, Akhil, Drakopoulos, Michael, Zhong, Zhong, Vo, Nghia T., Kisslinger, Kim, Tong, Xiao, Takeuchi, Esther S., Carbone, Matthew R., Lu, Deyu, Wang, Lei, Yan, Shan, Takeuchi, Kenneth J., Marschilok, Amy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67742
container_issue 49
container_start_page 67730
container_title ACS applied materials & interfaces
container_volume 16
creator Wang, Zhongling
Kuang, Jason
Rodriguez-Campos, Armando
Cao, Chuntian
Kingan, Arun
Barry, Patrick J.
Hill, Ryan C.
Arnot, David J.
Christianne, Adora
Bock, David C.
Du, Yonghua
Bak, Seong Min
Ma, Lu
Yang, Dali
Tayal, Akhil
Drakopoulos, Michael
Zhong, Zhong
Vo, Nghia T.
Kisslinger, Kim
Tong, Xiao
Takeuchi, Esther S.
Carbone, Matthew R.
Lu, Deyu
Wang, Lei
Yan, Shan
Takeuchi, Kenneth J.
Marschilok, Amy C.
description The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum­(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.
doi_str_mv 10.1021/acsami.4c14388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154241772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131850393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqVw5Yh8LEi7tWM7m3Br06VdqQgkCgcu0cQeb1w5cbGdSnknHpIsu_SG1JPn8H3_yPNn2VtGl4zm7AxUhN4uhWKCl-Wz7JhVQizKXObPH2chjrJXMd5RWvCcypfZEa_kqqC8OM5-r92orIZkhy1JHZJLG1UHYYvkAjt4sD4Qb8j5rxH9GMlPOyjybXRmDOQCUsJgMRI7_FW_Bow4KNwJn72bWo3D2J9ufrwndQdO-S0OViOpIYGbYvpIbmerDjZZBc6maSduhjnUgLLgyNqhSsGrDnsbU5heZy8MuIhvDu9J9v3T-ra-Xtx8udrU5zcLyEWZFpoVJQdJDWs1A6EZGlYVZVu1QgiquYFWy0LI3BgpZCGV0rrViuq2rLCElp9kp_vc--Dnj8fUzPsVOgfD7goNZ1Lkgq1W-RNQzkpJecVndLlHVfAxBjTNfbA9hKlhtNmV2ezLbA5lzsK7Q_bY9qgf8X_tzcCHPTCLzZ0fwzBf5X9pfwCSJK0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131850393</pqid></control><display><type>article</type><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><source>ACS Publications</source><creator>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</creator><creatorcontrib>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</creatorcontrib><description>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum­(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c14388</identifier><identifier>PMID: 39576036</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>batteries ; catalysts ; electrochemistry ; energy density ; Energy, Environmental, and Catalysis Applications ; energy-dispersive X-ray analysis ; fluorescence ; molybdenum ; Raman spectroscopy ; species ; sulfides ; sulfur ; tomography ; transmission electron microscopy ; X-radiation ; X-ray absorption spectroscopy ; X-ray diffraction ; zinc</subject><ispartof>ACS applied materials &amp; interfaces, 2024-12, Vol.16 (49), p.67730-67742</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</cites><orcidid>0000-0003-2655-045X ; 0000-0003-4351-6085 ; 0000-0002-3683-7377 ; 0000-0002-9715-9100 ; 0000-0001-8518-1047 ; 0000-0003-0620-6408 ; 0000-0001-8129-444X ; 0000-0002-1138-3655 ; 0000-0002-7330-3091 ; 0000-0001-9174-0474 ; 0000-0003-3126-6189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c14388$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c14388$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39576036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhongling</creatorcontrib><creatorcontrib>Kuang, Jason</creatorcontrib><creatorcontrib>Rodriguez-Campos, Armando</creatorcontrib><creatorcontrib>Cao, Chuntian</creatorcontrib><creatorcontrib>Kingan, Arun</creatorcontrib><creatorcontrib>Barry, Patrick J.</creatorcontrib><creatorcontrib>Hill, Ryan C.</creatorcontrib><creatorcontrib>Arnot, David J.</creatorcontrib><creatorcontrib>Christianne, Adora</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Du, Yonghua</creatorcontrib><creatorcontrib>Bak, Seong Min</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Dali</creatorcontrib><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Drakopoulos, Michael</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Vo, Nghia T.</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Carbone, Matthew R.</creatorcontrib><creatorcontrib>Lu, Deyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Shan</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum­(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</description><subject>batteries</subject><subject>catalysts</subject><subject>electrochemistry</subject><subject>energy density</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>energy-dispersive X-ray analysis</subject><subject>fluorescence</subject><subject>molybdenum</subject><subject>Raman spectroscopy</subject><subject>species</subject><subject>sulfides</subject><subject>sulfur</subject><subject>tomography</subject><subject>transmission electron microscopy</subject><subject>X-radiation</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><subject>zinc</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEoqVw5Yh8LEi7tWM7m3Br06VdqQgkCgcu0cQeb1w5cbGdSnknHpIsu_SG1JPn8H3_yPNn2VtGl4zm7AxUhN4uhWKCl-Wz7JhVQizKXObPH2chjrJXMd5RWvCcypfZEa_kqqC8OM5-r92orIZkhy1JHZJLG1UHYYvkAjt4sD4Qb8j5rxH9GMlPOyjybXRmDOQCUsJgMRI7_FW_Bow4KNwJn72bWo3D2J9ufrwndQdO-S0OViOpIYGbYvpIbmerDjZZBc6maSduhjnUgLLgyNqhSsGrDnsbU5heZy8MuIhvDu9J9v3T-ra-Xtx8udrU5zcLyEWZFpoVJQdJDWs1A6EZGlYVZVu1QgiquYFWy0LI3BgpZCGV0rrViuq2rLCElp9kp_vc--Dnj8fUzPsVOgfD7goNZ1Lkgq1W-RNQzkpJecVndLlHVfAxBjTNfbA9hKlhtNmV2ezLbA5lzsK7Q_bY9qgf8X_tzcCHPTCLzZ0fwzBf5X9pfwCSJK0p</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Wang, Zhongling</creator><creator>Kuang, Jason</creator><creator>Rodriguez-Campos, Armando</creator><creator>Cao, Chuntian</creator><creator>Kingan, Arun</creator><creator>Barry, Patrick J.</creator><creator>Hill, Ryan C.</creator><creator>Arnot, David J.</creator><creator>Christianne, Adora</creator><creator>Bock, David C.</creator><creator>Du, Yonghua</creator><creator>Bak, Seong Min</creator><creator>Ma, Lu</creator><creator>Yang, Dali</creator><creator>Tayal, Akhil</creator><creator>Drakopoulos, Michael</creator><creator>Zhong, Zhong</creator><creator>Vo, Nghia T.</creator><creator>Kisslinger, Kim</creator><creator>Tong, Xiao</creator><creator>Takeuchi, Esther S.</creator><creator>Carbone, Matthew R.</creator><creator>Lu, Deyu</creator><creator>Wang, Lei</creator><creator>Yan, Shan</creator><creator>Takeuchi, Kenneth J.</creator><creator>Marschilok, Amy C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2655-045X</orcidid><orcidid>https://orcid.org/0000-0003-4351-6085</orcidid><orcidid>https://orcid.org/0000-0002-3683-7377</orcidid><orcidid>https://orcid.org/0000-0002-9715-9100</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0003-0620-6408</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-1138-3655</orcidid><orcidid>https://orcid.org/0000-0002-7330-3091</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0003-3126-6189</orcidid></search><sort><creationdate>20241211</creationdate><title>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</title><author>Wang, Zhongling ; Kuang, Jason ; Rodriguez-Campos, Armando ; Cao, Chuntian ; Kingan, Arun ; Barry, Patrick J. ; Hill, Ryan C. ; Arnot, David J. ; Christianne, Adora ; Bock, David C. ; Du, Yonghua ; Bak, Seong Min ; Ma, Lu ; Yang, Dali ; Tayal, Akhil ; Drakopoulos, Michael ; Zhong, Zhong ; Vo, Nghia T. ; Kisslinger, Kim ; Tong, Xiao ; Takeuchi, Esther S. ; Carbone, Matthew R. ; Lu, Deyu ; Wang, Lei ; Yan, Shan ; Takeuchi, Kenneth J. ; Marschilok, Amy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-d1683a50f1bd1a4d1ef1968b9b4440d3fabd56452ff54565ccddbdc0db89e8ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>batteries</topic><topic>catalysts</topic><topic>electrochemistry</topic><topic>energy density</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>energy-dispersive X-ray analysis</topic><topic>fluorescence</topic><topic>molybdenum</topic><topic>Raman spectroscopy</topic><topic>species</topic><topic>sulfides</topic><topic>sulfur</topic><topic>tomography</topic><topic>transmission electron microscopy</topic><topic>X-radiation</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhongling</creatorcontrib><creatorcontrib>Kuang, Jason</creatorcontrib><creatorcontrib>Rodriguez-Campos, Armando</creatorcontrib><creatorcontrib>Cao, Chuntian</creatorcontrib><creatorcontrib>Kingan, Arun</creatorcontrib><creatorcontrib>Barry, Patrick J.</creatorcontrib><creatorcontrib>Hill, Ryan C.</creatorcontrib><creatorcontrib>Arnot, David J.</creatorcontrib><creatorcontrib>Christianne, Adora</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Du, Yonghua</creatorcontrib><creatorcontrib>Bak, Seong Min</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Dali</creatorcontrib><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Drakopoulos, Michael</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Vo, Nghia T.</creatorcontrib><creatorcontrib>Kisslinger, Kim</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Carbone, Matthew R.</creatorcontrib><creatorcontrib>Lu, Deyu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Shan</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhongling</au><au>Kuang, Jason</au><au>Rodriguez-Campos, Armando</au><au>Cao, Chuntian</au><au>Kingan, Arun</au><au>Barry, Patrick J.</au><au>Hill, Ryan C.</au><au>Arnot, David J.</au><au>Christianne, Adora</au><au>Bock, David C.</au><au>Du, Yonghua</au><au>Bak, Seong Min</au><au>Ma, Lu</au><au>Yang, Dali</au><au>Tayal, Akhil</au><au>Drakopoulos, Michael</au><au>Zhong, Zhong</au><au>Vo, Nghia T.</au><au>Kisslinger, Kim</au><au>Tong, Xiao</au><au>Takeuchi, Esther S.</au><au>Carbone, Matthew R.</au><au>Lu, Deyu</au><au>Wang, Lei</au><au>Yan, Shan</au><au>Takeuchi, Kenneth J.</au><au>Marschilok, Amy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>67730</spage><epage>67742</epage><pages>67730-67742</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The aqueous zinc–sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum­(IV) sulfide (MoS2) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid–solid and solid–liquid interfaces using experimental and theoretical approaches. Specifically, the MoS2-catalyzed electrochemical conversion reaction is characterized via ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy, synchrotron-based Mo K-edge X-ray absorption spectroscopy (XAS), and in situ synchrotron-based X-ray computed tomography (XCT). Additionally, operando synchrotron-based S K-edge XAS and X-ray fluorescence (XRF) maps are collected to determine the spatial evolution of sulfur-based species at the electrode–electrolyte interface. Coupling the operando S K-edge XAS data with the simulated spectra and fitting the data suggested a possible ZnS2 intermediate phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39576036</pmid><doi>10.1021/acsami.4c14388</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2655-045X</orcidid><orcidid>https://orcid.org/0000-0003-4351-6085</orcidid><orcidid>https://orcid.org/0000-0002-3683-7377</orcidid><orcidid>https://orcid.org/0000-0002-9715-9100</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0003-0620-6408</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0002-1138-3655</orcidid><orcidid>https://orcid.org/0000-0002-7330-3091</orcidid><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0003-3126-6189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67730-67742
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3154241772
source ACS Publications
subjects batteries
catalysts
electrochemistry
energy density
Energy, Environmental, and Catalysis Applications
energy-dispersive X-ray analysis
fluorescence
molybdenum
Raman spectroscopy
species
sulfides
sulfur
tomography
transmission electron microscopy
X-radiation
X-ray absorption spectroscopy
X-ray diffraction
zinc
title Elucidating the Discharge Behavior of Aqueous Zinc Sulfur Batteries in the Presence of Molybdenum(IV) Chalcogenide Catalyst: The Criticality of Interfacial Electrochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Discharge%20Behavior%20of%20Aqueous%20Zinc%20Sulfur%20Batteries%20in%20the%20Presence%20of%20Molybdenum(IV)%20Chalcogenide%20Catalyst:%20The%20Criticality%20of%20Interfacial%20Electrochemistry&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Zhongling&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=67730&rft.epage=67742&rft.pages=67730-67742&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c14388&rft_dat=%3Cproquest_cross%3E3131850393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131850393&rft_id=info:pmid/39576036&rfr_iscdi=true