Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements

Recovery of rare-earth elements (REEs) from REE-containing waste streams is vital for resource sustainable supply and environmental protection. Microbial biosorption by utilizing lanthanide binding tags (LBTs) immobilized on the cell surface for selectively capturing REEs offers an appealing option,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-12, Vol.12 (49), p.17693-17701
Hauptverfasser: Wu, Qi-Zhong, Lin, Wei-Qiang, Du, Wen-Zheng, Qiu, Zhen-Yu, Xu, Peng, Sheng, Guo-Ping, Li, Wen-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17701
container_issue 49
container_start_page 17693
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Wu, Qi-Zhong
Lin, Wei-Qiang
Du, Wen-Zheng
Qiu, Zhen-Yu
Xu, Peng
Sheng, Guo-Ping
Li, Wen-Wei
description Recovery of rare-earth elements (REEs) from REE-containing waste streams is vital for resource sustainable supply and environmental protection. Microbial biosorption by utilizing lanthanide binding tags (LBTs) immobilized on the cell surface for selectively capturing REEs offers an appealing option, yet this technology is currently restricted by the limited adsorption capacity. Here, we report a curli display strategy to drastically raise the extracellular LBT loading of the engineered cells by using Escherichia coli as a model. The bacteria with abundant self-assembled LBT-loaded curli exhibited over 2-fold higher terbium adsorption capacity than the control with cell surface-displayed proteins. It rivals the abiotic sorbents in adsorption capacity but offers much higher selectivity. Moreover, the biosorbent still retained 94% adsorption capacity after six consecutive sorption–desorption cycles and was successfully used to recover REEs from simulated acid mine drainage. A similar strategy of curli-displayed proteins for metal binding was also applied to the recovery of gold ions from water, implying that such an engineered biosorbent may serve as a universal biological platform for metal recovery from complicated water matrices.
doi_str_mv 10.1021/acssuschemeng.4c06001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154240180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154240180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a206t-69dd6e62ae4b7b013a399709c29340652dc2eef305b9ac23aab64bc57dfb59b23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWLQ_QcjRy9Z87Kabo5atChWh6E0ISXZiU7abmuwq9de7pT3oyVwmMO8zzDwIXVEyoYTRG21T6pNdwQba90luiSCEnqARo6LMSF4Wp7_-52ic0poMT0rOSjpCb0_exmC8bvCdDylEA22Hv3y3wvO-tZ0PrW78N9R41sfGYxcirpzz1u9zS7DhE-IOB4eXOkJW6TiQVbPfpkuX6MzpJsH4WC_Q67x6mT1ki-f7x9ntItOMiC4Tsq4FCKYhN1NDKNdcyimRlkmeE1Gw2jIAx0lhpLaMa21EbmwxrZ0ppGH8Al0f5m5j-OghdWrjk4Wm0S2EPilOi5zlhJZkiBaH6HB1ShGc2ka_0XGnKFF7oeqPUHUUOnD0wA1ttQ59HLSkf5gfkvF_Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154240180</pqid></control><display><type>article</type><title>Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements</title><source>ACS Publications</source><creator>Wu, Qi-Zhong ; Lin, Wei-Qiang ; Du, Wen-Zheng ; Qiu, Zhen-Yu ; Xu, Peng ; Sheng, Guo-Ping ; Li, Wen-Wei</creator><creatorcontrib>Wu, Qi-Zhong ; Lin, Wei-Qiang ; Du, Wen-Zheng ; Qiu, Zhen-Yu ; Xu, Peng ; Sheng, Guo-Ping ; Li, Wen-Wei</creatorcontrib><description>Recovery of rare-earth elements (REEs) from REE-containing waste streams is vital for resource sustainable supply and environmental protection. Microbial biosorption by utilizing lanthanide binding tags (LBTs) immobilized on the cell surface for selectively capturing REEs offers an appealing option, yet this technology is currently restricted by the limited adsorption capacity. Here, we report a curli display strategy to drastically raise the extracellular LBT loading of the engineered cells by using Escherichia coli as a model. The bacteria with abundant self-assembled LBT-loaded curli exhibited over 2-fold higher terbium adsorption capacity than the control with cell surface-displayed proteins. It rivals the abiotic sorbents in adsorption capacity but offers much higher selectivity. Moreover, the biosorbent still retained 94% adsorption capacity after six consecutive sorption–desorption cycles and was successfully used to recover REEs from simulated acid mine drainage. A similar strategy of curli-displayed proteins for metal binding was also applied to the recovery of gold ions from water, implying that such an engineered biosorbent may serve as a universal biological platform for metal recovery from complicated water matrices.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c06001</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>acid mine drainage ; adsorption ; biosorbents ; biosorption ; environmental protection ; Escherichia coli ; gold ; green chemistry ; sorbents ; terbium</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-12, Vol.12 (49), p.17693-17701</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a206t-69dd6e62ae4b7b013a399709c29340652dc2eef305b9ac23aab64bc57dfb59b23</cites><orcidid>0000-0002-0373-4187 ; 0000-0002-3697-1138 ; 0000-0001-9280-0045 ; 0000-0003-4579-1654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c06001$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c06001$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wu, Qi-Zhong</creatorcontrib><creatorcontrib>Lin, Wei-Qiang</creatorcontrib><creatorcontrib>Du, Wen-Zheng</creatorcontrib><creatorcontrib>Qiu, Zhen-Yu</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Sheng, Guo-Ping</creatorcontrib><creatorcontrib>Li, Wen-Wei</creatorcontrib><title>Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Recovery of rare-earth elements (REEs) from REE-containing waste streams is vital for resource sustainable supply and environmental protection. Microbial biosorption by utilizing lanthanide binding tags (LBTs) immobilized on the cell surface for selectively capturing REEs offers an appealing option, yet this technology is currently restricted by the limited adsorption capacity. Here, we report a curli display strategy to drastically raise the extracellular LBT loading of the engineered cells by using Escherichia coli as a model. The bacteria with abundant self-assembled LBT-loaded curli exhibited over 2-fold higher terbium adsorption capacity than the control with cell surface-displayed proteins. It rivals the abiotic sorbents in adsorption capacity but offers much higher selectivity. Moreover, the biosorbent still retained 94% adsorption capacity after six consecutive sorption–desorption cycles and was successfully used to recover REEs from simulated acid mine drainage. A similar strategy of curli-displayed proteins for metal binding was also applied to the recovery of gold ions from water, implying that such an engineered biosorbent may serve as a universal biological platform for metal recovery from complicated water matrices.</description><subject>acid mine drainage</subject><subject>adsorption</subject><subject>biosorbents</subject><subject>biosorption</subject><subject>environmental protection</subject><subject>Escherichia coli</subject><subject>gold</subject><subject>green chemistry</subject><subject>sorbents</subject><subject>terbium</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWLQ_QcjRy9Z87Kabo5atChWh6E0ISXZiU7abmuwq9de7pT3oyVwmMO8zzDwIXVEyoYTRG21T6pNdwQba90luiSCEnqARo6LMSF4Wp7_-52ic0poMT0rOSjpCb0_exmC8bvCdDylEA22Hv3y3wvO-tZ0PrW78N9R41sfGYxcirpzz1u9zS7DhE-IOB4eXOkJW6TiQVbPfpkuX6MzpJsH4WC_Q67x6mT1ki-f7x9ntItOMiC4Tsq4FCKYhN1NDKNdcyimRlkmeE1Gw2jIAx0lhpLaMa21EbmwxrZ0ppGH8Al0f5m5j-OghdWrjk4Wm0S2EPilOi5zlhJZkiBaH6HB1ShGc2ka_0XGnKFF7oeqPUHUUOnD0wA1ttQ59HLSkf5gfkvF_Rg</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Wu, Qi-Zhong</creator><creator>Lin, Wei-Qiang</creator><creator>Du, Wen-Zheng</creator><creator>Qiu, Zhen-Yu</creator><creator>Xu, Peng</creator><creator>Sheng, Guo-Ping</creator><creator>Li, Wen-Wei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0373-4187</orcidid><orcidid>https://orcid.org/0000-0002-3697-1138</orcidid><orcidid>https://orcid.org/0000-0001-9280-0045</orcidid><orcidid>https://orcid.org/0000-0003-4579-1654</orcidid></search><sort><creationdate>20241209</creationdate><title>Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements</title><author>Wu, Qi-Zhong ; Lin, Wei-Qiang ; Du, Wen-Zheng ; Qiu, Zhen-Yu ; Xu, Peng ; Sheng, Guo-Ping ; Li, Wen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a206t-69dd6e62ae4b7b013a399709c29340652dc2eef305b9ac23aab64bc57dfb59b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acid mine drainage</topic><topic>adsorption</topic><topic>biosorbents</topic><topic>biosorption</topic><topic>environmental protection</topic><topic>Escherichia coli</topic><topic>gold</topic><topic>green chemistry</topic><topic>sorbents</topic><topic>terbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qi-Zhong</creatorcontrib><creatorcontrib>Lin, Wei-Qiang</creatorcontrib><creatorcontrib>Du, Wen-Zheng</creatorcontrib><creatorcontrib>Qiu, Zhen-Yu</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Sheng, Guo-Ping</creatorcontrib><creatorcontrib>Li, Wen-Wei</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qi-Zhong</au><au>Lin, Wei-Qiang</au><au>Du, Wen-Zheng</au><au>Qiu, Zhen-Yu</au><au>Xu, Peng</au><au>Sheng, Guo-Ping</au><au>Li, Wen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-12-09</date><risdate>2024</risdate><volume>12</volume><issue>49</issue><spage>17693</spage><epage>17701</epage><pages>17693-17701</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Recovery of rare-earth elements (REEs) from REE-containing waste streams is vital for resource sustainable supply and environmental protection. Microbial biosorption by utilizing lanthanide binding tags (LBTs) immobilized on the cell surface for selectively capturing REEs offers an appealing option, yet this technology is currently restricted by the limited adsorption capacity. Here, we report a curli display strategy to drastically raise the extracellular LBT loading of the engineered cells by using Escherichia coli as a model. The bacteria with abundant self-assembled LBT-loaded curli exhibited over 2-fold higher terbium adsorption capacity than the control with cell surface-displayed proteins. It rivals the abiotic sorbents in adsorption capacity but offers much higher selectivity. Moreover, the biosorbent still retained 94% adsorption capacity after six consecutive sorption–desorption cycles and was successfully used to recover REEs from simulated acid mine drainage. A similar strategy of curli-displayed proteins for metal binding was also applied to the recovery of gold ions from water, implying that such an engineered biosorbent may serve as a universal biological platform for metal recovery from complicated water matrices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c06001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0373-4187</orcidid><orcidid>https://orcid.org/0000-0002-3697-1138</orcidid><orcidid>https://orcid.org/0000-0001-9280-0045</orcidid><orcidid>https://orcid.org/0000-0003-4579-1654</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-12, Vol.12 (49), p.17693-17701
issn 2168-0485
2168-0485
language eng
recordid cdi_proquest_miscellaneous_3154240180
source ACS Publications
subjects acid mine drainage
adsorption
biosorbents
biosorption
environmental protection
Escherichia coli
gold
green chemistry
sorbents
terbium
title Microbial Biosorbent with Functionalized Curli for Efficient Recovery of Rare-Earth Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Biosorbent%20with%20Functionalized%20Curli%20for%20Efficient%20Recovery%20of%20Rare-Earth%20Elements&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wu,%20Qi-Zhong&rft.date=2024-12-09&rft.volume=12&rft.issue=49&rft.spage=17693&rft.epage=17701&rft.pages=17693-17701&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c06001&rft_dat=%3Cproquest_cross%3E3154240180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154240180&rft_id=info:pmid/&rfr_iscdi=true