0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors
Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67706-67714 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67714 |
---|---|
container_issue | 49 |
container_start_page | 67706 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Li, Junke Tian, Xuan He, Kunyu Gao, Shoukun Wu, Zitong Yang, Sheng Wang, Faxing Ricciardulli, Antonio Gaetano Wang, Songlin Gao, Yao Zhang, Panpan Lu, Xing |
description | Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products. |
doi_str_mv | 10.1021/acsami.4c13973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154236512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133462348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</originalsourceid><addsrcrecordid>eNqNkc9Kw0AQxhdRbK1ePUqOIqTu_6RHaa0VWvSg57CdTHRL0tTdBPTmO_iGPolbUnsTvMwMzO_7YOYj5JzRIaOcXRvwprJDCUyMEnFA-mwkZZxyxQ_3s5Q9cuL9ilItOFXHpCdGOog17ZOCTr4_v9i28Em0aMvG5rbCtbf12pTRDBt0tW9cC03rMJrasvJRUbtoZl9e40d0Ya7MGsKqxHe7LDFaWAiSdoMOzMaAbWrnT8lRYUqPZ7s-IM_T26fxLJ4_3N2Pb-ax4TJtYlksNSiao2ZpDkJgLiDXErRUSlPBBE8YFFpBgrBUaIBBMhJQIJdYpEkiBuSy8924-q1F32SV9YBladZYtz4TTEkutGL8H6gQUnMh04AOO3R7mHdYZBtnK-M-MkazbQxZF0O2iyEILnbe7bLCfI___j0AVx0QhNmqbl14tv_L7Qe-8pUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133462348</pqid></control><display><type>article</type><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><source>ACS Publications</source><creator>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</creator><creatorcontrib>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</creatorcontrib><description>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13973</identifier><identifier>PMID: 39602160</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; capacitance ; carbon ; electrical conductivity ; electrodes ; electrolytes ; electronics ; energy ; energy density ; Energy, Environmental, and Catalysis Applications ; longevity ; nanosheets ; nanotubes ; strength (mechanics)</subject><ispartof>ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67706-67714</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</cites><orcidid>0000-0003-0172-8151 ; 0000-0002-1134-885X ; 0000-0002-3967-6548 ; 0000-0003-1015-1905 ; 0000-0003-2741-8733 ; 0000-0003-2688-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13973$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13973$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39602160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junke</creatorcontrib><creatorcontrib>Tian, Xuan</creatorcontrib><creatorcontrib>He, Kunyu</creatorcontrib><creatorcontrib>Gao, Shoukun</creatorcontrib><creatorcontrib>Wu, Zitong</creatorcontrib><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wang, Faxing</creatorcontrib><creatorcontrib>Ricciardulli, Antonio Gaetano</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><creatorcontrib>Gao, Yao</creatorcontrib><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</description><subject>active sites</subject><subject>capacitance</subject><subject>carbon</subject><subject>electrical conductivity</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>electronics</subject><subject>energy</subject><subject>energy density</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>longevity</subject><subject>nanosheets</subject><subject>nanotubes</subject><subject>strength (mechanics)</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkc9Kw0AQxhdRbK1ePUqOIqTu_6RHaa0VWvSg57CdTHRL0tTdBPTmO_iGPolbUnsTvMwMzO_7YOYj5JzRIaOcXRvwprJDCUyMEnFA-mwkZZxyxQ_3s5Q9cuL9ilItOFXHpCdGOog17ZOCTr4_v9i28Em0aMvG5rbCtbf12pTRDBt0tW9cC03rMJrasvJRUbtoZl9e40d0Ya7MGsKqxHe7LDFaWAiSdoMOzMaAbWrnT8lRYUqPZ7s-IM_T26fxLJ4_3N2Pb-ax4TJtYlksNSiao2ZpDkJgLiDXErRUSlPBBE8YFFpBgrBUaIBBMhJQIJdYpEkiBuSy8924-q1F32SV9YBladZYtz4TTEkutGL8H6gQUnMh04AOO3R7mHdYZBtnK-M-MkazbQxZF0O2iyEILnbe7bLCfI___j0AVx0QhNmqbl14tv_L7Qe-8pUL</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Li, Junke</creator><creator>Tian, Xuan</creator><creator>He, Kunyu</creator><creator>Gao, Shoukun</creator><creator>Wu, Zitong</creator><creator>Yang, Sheng</creator><creator>Wang, Faxing</creator><creator>Ricciardulli, Antonio Gaetano</creator><creator>Wang, Songlin</creator><creator>Gao, Yao</creator><creator>Zhang, Panpan</creator><creator>Lu, Xing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0172-8151</orcidid><orcidid>https://orcid.org/0000-0002-1134-885X</orcidid><orcidid>https://orcid.org/0000-0002-3967-6548</orcidid><orcidid>https://orcid.org/0000-0003-1015-1905</orcidid><orcidid>https://orcid.org/0000-0003-2741-8733</orcidid><orcidid>https://orcid.org/0000-0003-2688-9912</orcidid></search><sort><creationdate>20241211</creationdate><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><author>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active sites</topic><topic>capacitance</topic><topic>carbon</topic><topic>electrical conductivity</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>electronics</topic><topic>energy</topic><topic>energy density</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>longevity</topic><topic>nanosheets</topic><topic>nanotubes</topic><topic>strength (mechanics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junke</creatorcontrib><creatorcontrib>Tian, Xuan</creatorcontrib><creatorcontrib>He, Kunyu</creatorcontrib><creatorcontrib>Gao, Shoukun</creatorcontrib><creatorcontrib>Wu, Zitong</creatorcontrib><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wang, Faxing</creatorcontrib><creatorcontrib>Ricciardulli, Antonio Gaetano</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><creatorcontrib>Gao, Yao</creatorcontrib><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junke</au><au>Tian, Xuan</au><au>He, Kunyu</au><au>Gao, Shoukun</au><au>Wu, Zitong</au><au>Yang, Sheng</au><au>Wang, Faxing</au><au>Ricciardulli, Antonio Gaetano</au><au>Wang, Songlin</au><au>Gao, Yao</au><au>Zhang, Panpan</au><au>Lu, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>67706</spage><epage>67714</epage><pages>67706-67714</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39602160</pmid><doi>10.1021/acsami.4c13973</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0172-8151</orcidid><orcidid>https://orcid.org/0000-0002-1134-885X</orcidid><orcidid>https://orcid.org/0000-0002-3967-6548</orcidid><orcidid>https://orcid.org/0000-0003-1015-1905</orcidid><orcidid>https://orcid.org/0000-0003-2741-8733</orcidid><orcidid>https://orcid.org/0000-0003-2688-9912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67706-67714 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154236512 |
source | ACS Publications |
subjects | active sites capacitance carbon electrical conductivity electrodes electrolytes electronics energy energy density Energy, Environmental, and Catalysis Applications longevity nanosheets nanotubes strength (mechanics) |
title | 0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=0D%E2%80%931D%E2%80%932D%20Multidimensional%20Heterostructure%20Films%20for%20High-Performance%20Flexible%20Microsupercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Junke&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=67706&rft.epage=67714&rft.pages=67706-67714&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13973&rft_dat=%3Cproquest_cross%3E3133462348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133462348&rft_id=info:pmid/39602160&rfr_iscdi=true |