0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors

Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67706-67714
Hauptverfasser: Li, Junke, Tian, Xuan, He, Kunyu, Gao, Shoukun, Wu, Zitong, Yang, Sheng, Wang, Faxing, Ricciardulli, Antonio Gaetano, Wang, Songlin, Gao, Yao, Zhang, Panpan, Lu, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67714
container_issue 49
container_start_page 67706
container_title ACS applied materials & interfaces
container_volume 16
creator Li, Junke
Tian, Xuan
He, Kunyu
Gao, Shoukun
Wu, Zitong
Yang, Sheng
Wang, Faxing
Ricciardulli, Antonio Gaetano
Wang, Songlin
Gao, Yao
Zhang, Panpan
Lu, Xing
description Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.
doi_str_mv 10.1021/acsami.4c13973
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154236512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133462348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</originalsourceid><addsrcrecordid>eNqNkc9Kw0AQxhdRbK1ePUqOIqTu_6RHaa0VWvSg57CdTHRL0tTdBPTmO_iGPolbUnsTvMwMzO_7YOYj5JzRIaOcXRvwprJDCUyMEnFA-mwkZZxyxQ_3s5Q9cuL9ilItOFXHpCdGOog17ZOCTr4_v9i28Em0aMvG5rbCtbf12pTRDBt0tW9cC03rMJrasvJRUbtoZl9e40d0Ya7MGsKqxHe7LDFaWAiSdoMOzMaAbWrnT8lRYUqPZ7s-IM_T26fxLJ4_3N2Pb-ax4TJtYlksNSiao2ZpDkJgLiDXErRUSlPBBE8YFFpBgrBUaIBBMhJQIJdYpEkiBuSy8924-q1F32SV9YBladZYtz4TTEkutGL8H6gQUnMh04AOO3R7mHdYZBtnK-M-MkazbQxZF0O2iyEILnbe7bLCfI___j0AVx0QhNmqbl14tv_L7Qe-8pUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133462348</pqid></control><display><type>article</type><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><source>ACS Publications</source><creator>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</creator><creatorcontrib>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</creatorcontrib><description>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13973</identifier><identifier>PMID: 39602160</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; capacitance ; carbon ; electrical conductivity ; electrodes ; electrolytes ; electronics ; energy ; energy density ; Energy, Environmental, and Catalysis Applications ; longevity ; nanosheets ; nanotubes ; strength (mechanics)</subject><ispartof>ACS applied materials &amp; interfaces, 2024-12, Vol.16 (49), p.67706-67714</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</cites><orcidid>0000-0003-0172-8151 ; 0000-0002-1134-885X ; 0000-0002-3967-6548 ; 0000-0003-1015-1905 ; 0000-0003-2741-8733 ; 0000-0003-2688-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13973$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13973$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39602160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junke</creatorcontrib><creatorcontrib>Tian, Xuan</creatorcontrib><creatorcontrib>He, Kunyu</creatorcontrib><creatorcontrib>Gao, Shoukun</creatorcontrib><creatorcontrib>Wu, Zitong</creatorcontrib><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wang, Faxing</creatorcontrib><creatorcontrib>Ricciardulli, Antonio Gaetano</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><creatorcontrib>Gao, Yao</creatorcontrib><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</description><subject>active sites</subject><subject>capacitance</subject><subject>carbon</subject><subject>electrical conductivity</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>electronics</subject><subject>energy</subject><subject>energy density</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>longevity</subject><subject>nanosheets</subject><subject>nanotubes</subject><subject>strength (mechanics)</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkc9Kw0AQxhdRbK1ePUqOIqTu_6RHaa0VWvSg57CdTHRL0tTdBPTmO_iGPolbUnsTvMwMzO_7YOYj5JzRIaOcXRvwprJDCUyMEnFA-mwkZZxyxQ_3s5Q9cuL9ilItOFXHpCdGOog17ZOCTr4_v9i28Em0aMvG5rbCtbf12pTRDBt0tW9cC03rMJrasvJRUbtoZl9e40d0Ya7MGsKqxHe7LDFaWAiSdoMOzMaAbWrnT8lRYUqPZ7s-IM_T26fxLJ4_3N2Pb-ax4TJtYlksNSiao2ZpDkJgLiDXErRUSlPBBE8YFFpBgrBUaIBBMhJQIJdYpEkiBuSy8924-q1F32SV9YBladZYtz4TTEkutGL8H6gQUnMh04AOO3R7mHdYZBtnK-M-MkazbQxZF0O2iyEILnbe7bLCfI___j0AVx0QhNmqbl14tv_L7Qe-8pUL</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Li, Junke</creator><creator>Tian, Xuan</creator><creator>He, Kunyu</creator><creator>Gao, Shoukun</creator><creator>Wu, Zitong</creator><creator>Yang, Sheng</creator><creator>Wang, Faxing</creator><creator>Ricciardulli, Antonio Gaetano</creator><creator>Wang, Songlin</creator><creator>Gao, Yao</creator><creator>Zhang, Panpan</creator><creator>Lu, Xing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0172-8151</orcidid><orcidid>https://orcid.org/0000-0002-1134-885X</orcidid><orcidid>https://orcid.org/0000-0002-3967-6548</orcidid><orcidid>https://orcid.org/0000-0003-1015-1905</orcidid><orcidid>https://orcid.org/0000-0003-2741-8733</orcidid><orcidid>https://orcid.org/0000-0003-2688-9912</orcidid></search><sort><creationdate>20241211</creationdate><title>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</title><author>Li, Junke ; Tian, Xuan ; He, Kunyu ; Gao, Shoukun ; Wu, Zitong ; Yang, Sheng ; Wang, Faxing ; Ricciardulli, Antonio Gaetano ; Wang, Songlin ; Gao, Yao ; Zhang, Panpan ; Lu, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-4fb6c50de618dc33ed3cd64c645560313271cf65c7ecb5eac1c793cfe24ef8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active sites</topic><topic>capacitance</topic><topic>carbon</topic><topic>electrical conductivity</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>electronics</topic><topic>energy</topic><topic>energy density</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>longevity</topic><topic>nanosheets</topic><topic>nanotubes</topic><topic>strength (mechanics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junke</creatorcontrib><creatorcontrib>Tian, Xuan</creatorcontrib><creatorcontrib>He, Kunyu</creatorcontrib><creatorcontrib>Gao, Shoukun</creatorcontrib><creatorcontrib>Wu, Zitong</creatorcontrib><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wang, Faxing</creatorcontrib><creatorcontrib>Ricciardulli, Antonio Gaetano</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><creatorcontrib>Gao, Yao</creatorcontrib><creatorcontrib>Zhang, Panpan</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junke</au><au>Tian, Xuan</au><au>He, Kunyu</au><au>Gao, Shoukun</au><au>Wu, Zitong</au><au>Yang, Sheng</au><au>Wang, Faxing</au><au>Ricciardulli, Antonio Gaetano</au><au>Wang, Songlin</au><au>Gao, Yao</au><au>Zhang, Panpan</au><au>Lu, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>67706</spage><epage>67714</epage><pages>67706-67714</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Planar microsupercapacitors (MSCs) are of great value for flexible and wearable electronics. The rational design of electrode materials with rapid ionic kinetics and sufficient active site exposure is critical but challenging for realizing high-energy MSCs. Herein, we report the dot-tube-sheet multidimensional heterostructure films (MHFs) with versatile patterns by a simple mask-assisted strategy, consisting of 0D carbon dots (CDs), 1D carboxyl-carbon nanotubes (c-CNTs), and 2D Ti3C2 MXene nanosheets. Thanks to the high electrical conductivity, enlarged interlayer spacing, abundant porous channels, and excellent mechanical strength, the CDs/c-CNTs/Ti3C2 MHF electrodes deliver a remarkable areal capacitance of 1162.6 mF cm–2 at 0.8 mA cm–2 and prominent cycling stability (107.1% capacitance retention after 10,000 cycles) in a 1 M H2SO4 electrolyte. Moreover, the fabricated solid-state CDs/c-CNTs/Ti3C2 MSCs achieve a high energy density (11.1 mWh cm–2) and long-term cycling lifespan (102.1% capacitance retention after 8000 cycles), superior to those of state-of-the-art MSCs. The parallel and serial interconnected modular power sources highlight the potential for powering the actual energy consumption products.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39602160</pmid><doi>10.1021/acsami.4c13973</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0172-8151</orcidid><orcidid>https://orcid.org/0000-0002-1134-885X</orcidid><orcidid>https://orcid.org/0000-0002-3967-6548</orcidid><orcidid>https://orcid.org/0000-0003-1015-1905</orcidid><orcidid>https://orcid.org/0000-0003-2741-8733</orcidid><orcidid>https://orcid.org/0000-0003-2688-9912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67706-67714
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3154236512
source ACS Publications
subjects active sites
capacitance
carbon
electrical conductivity
electrodes
electrolytes
electronics
energy
energy density
Energy, Environmental, and Catalysis Applications
longevity
nanosheets
nanotubes
strength (mechanics)
title 0D–1D–2D Multidimensional Heterostructure Films for High-Performance Flexible Microsupercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=0D%E2%80%931D%E2%80%932D%20Multidimensional%20Heterostructure%20Films%20for%20High-Performance%20Flexible%20Microsupercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Junke&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=67706&rft.epage=67714&rft.pages=67706-67714&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13973&rft_dat=%3Cproquest_cross%3E3133462348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133462348&rft_id=info:pmid/39602160&rfr_iscdi=true