Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination

Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-02, Vol.463, p.132787, Article 132787
Hauptverfasser: Yan, Ni, Ren, Tengfei, Lu, Kechao, Gao, Yifan, Sun, Meng, Huang, Xia, Zhang, Xiaoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 132787
container_title Journal of hazardous materials
container_volume 463
creator Yan, Ni
Ren, Tengfei
Lu, Kechao
Gao, Yifan
Sun, Meng
Huang, Xia
Zhang, Xiaoyuan
description Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO , respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen ( O ) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of O and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote O production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.
doi_str_mv 10.1016/j.jhazmat.2023.132787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154188649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154188649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0Eaoe2jwDykk0G29eJ7SUaUUCqxAbW0Y1zUzJy4mI7gvD0zWgG1qy-zfnujw5jb6TYSyGb98f98Qf-mbDslVCwl6CMNS_YTloDFQA0L9lOgNAVWKev2eucj0IIaWp9xa7BaSedkzu2HjB1ca46zNRzCuRLih4LhrWMnvcLhmqiqUs4E89rLjTxLoYtU-Z5nB8DFR5_r48086cU-8WXMc58iIkvoSQcMBf-Czec9-TjXHAaZzwxt-zVgCHT3SVv2Pf7j98On6uHr5--HD48VB60KpVzXaPsYAidlfVgPBholAOBnhrjLYF2QpFWAJ0bPFEjAYe-BtegU9rDDXt3nrud93OhXNppzJ5C2D6KS25B1lpa22j3H6gCKxphYEPrM-pTzDnR0D6lccK0tlK0J0Htsb0Iak-C2rOgrff2smLpJur_tf4agWf_U5Gh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123806073</pqid></control><display><type>article</type><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</creator><creatorcontrib>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</creatorcontrib><description>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO , respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen ( O ) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of O and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote O production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2023.132787</identifier><identifier>PMID: 39491991</identifier><language>eng</language><publisher>Netherlands</publisher><subject>anodes ; carbon ; cathodes ; cost effectiveness ; decontamination ; drugs ; electrochemistry ; oxidation ; oxygen production ; propranolol ; singlet oxygen ; toxicity</subject><ispartof>Journal of hazardous materials, 2024-02, Vol.463, p.132787, Article 132787</ispartof><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</citedby><cites>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</cites><orcidid>0000-0003-3196-3443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39491991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Ni</creatorcontrib><creatorcontrib>Ren, Tengfei</creatorcontrib><creatorcontrib>Lu, Kechao</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Zhang, Xiaoyuan</creatorcontrib><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO , respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen ( O ) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of O and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote O production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</description><subject>anodes</subject><subject>carbon</subject><subject>cathodes</subject><subject>cost effectiveness</subject><subject>decontamination</subject><subject>drugs</subject><subject>electrochemistry</subject><subject>oxidation</subject><subject>oxygen production</subject><subject>propranolol</subject><subject>singlet oxygen</subject><subject>toxicity</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAURi0Eaoe2jwDykk0G29eJ7SUaUUCqxAbW0Y1zUzJy4mI7gvD0zWgG1qy-zfnujw5jb6TYSyGb98f98Qf-mbDslVCwl6CMNS_YTloDFQA0L9lOgNAVWKev2eucj0IIaWp9xa7BaSedkzu2HjB1ca46zNRzCuRLih4LhrWMnvcLhmqiqUs4E89rLjTxLoYtU-Z5nB8DFR5_r48086cU-8WXMc58iIkvoSQcMBf-Czec9-TjXHAaZzwxt-zVgCHT3SVv2Pf7j98On6uHr5--HD48VB60KpVzXaPsYAidlfVgPBholAOBnhrjLYF2QpFWAJ0bPFEjAYe-BtegU9rDDXt3nrud93OhXNppzJ5C2D6KS25B1lpa22j3H6gCKxphYEPrM-pTzDnR0D6lccK0tlK0J0Htsb0Iak-C2rOgrff2smLpJur_tf4agWf_U5Gh</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Yan, Ni</creator><creator>Ren, Tengfei</creator><creator>Lu, Kechao</creator><creator>Gao, Yifan</creator><creator>Sun, Meng</creator><creator>Huang, Xia</creator><creator>Zhang, Xiaoyuan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3196-3443</orcidid></search><sort><creationdate>20240205</creationdate><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><author>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>carbon</topic><topic>cathodes</topic><topic>cost effectiveness</topic><topic>decontamination</topic><topic>drugs</topic><topic>electrochemistry</topic><topic>oxidation</topic><topic>oxygen production</topic><topic>propranolol</topic><topic>singlet oxygen</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ni</creatorcontrib><creatorcontrib>Ren, Tengfei</creatorcontrib><creatorcontrib>Lu, Kechao</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Zhang, Xiaoyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ni</au><au>Ren, Tengfei</au><au>Lu, Kechao</au><au>Gao, Yifan</au><au>Sun, Meng</au><au>Huang, Xia</au><au>Zhang, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-02-05</date><risdate>2024</risdate><volume>463</volume><spage>132787</spage><pages>132787-</pages><artnum>132787</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO , respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen ( O ) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of O and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote O production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</abstract><cop>Netherlands</cop><pmid>39491991</pmid><doi>10.1016/j.jhazmat.2023.132787</doi><orcidid>https://orcid.org/0000-0003-3196-3443</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2024-02, Vol.463, p.132787, Article 132787
issn 0304-3894
1873-3336
1873-3336
language eng
recordid cdi_proquest_miscellaneous_3154188649
source ScienceDirect Journals (5 years ago - present)
subjects anodes
carbon
cathodes
cost effectiveness
decontamination
drugs
electrochemistry
oxidation
oxygen production
propranolol
singlet oxygen
toxicity
title Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-based%20electrocatalytic%20dual-membrane%20system%20bolsters%20singlet%20oxygen%20production%20for%20ultrafast%20water%20decontamination&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Yan,%20Ni&rft.date=2024-02-05&rft.volume=463&rft.spage=132787&rft.pages=132787-&rft.artnum=132787&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2023.132787&rft_dat=%3Cproquest_cross%3E3154188649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123806073&rft_id=info:pmid/39491991&rfr_iscdi=true