Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination
Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathod...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-02, Vol.463, p.132787, Article 132787 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 132787 |
container_title | Journal of hazardous materials |
container_volume | 463 |
creator | Yan, Ni Ren, Tengfei Lu, Kechao Gao, Yifan Sun, Meng Huang, Xia Zhang, Xiaoyuan |
description | Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO
, respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen (
O
) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of
O
and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote
O
production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal. |
doi_str_mv | 10.1016/j.jhazmat.2023.132787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154188649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154188649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0Eaoe2jwDykk0G29eJ7SUaUUCqxAbW0Y1zUzJy4mI7gvD0zWgG1qy-zfnujw5jb6TYSyGb98f98Qf-mbDslVCwl6CMNS_YTloDFQA0L9lOgNAVWKev2eucj0IIaWp9xa7BaSedkzu2HjB1ca46zNRzCuRLih4LhrWMnvcLhmqiqUs4E89rLjTxLoYtU-Z5nB8DFR5_r48086cU-8WXMc58iIkvoSQcMBf-Czec9-TjXHAaZzwxt-zVgCHT3SVv2Pf7j98On6uHr5--HD48VB60KpVzXaPsYAidlfVgPBholAOBnhrjLYF2QpFWAJ0bPFEjAYe-BtegU9rDDXt3nrud93OhXNppzJ5C2D6KS25B1lpa22j3H6gCKxphYEPrM-pTzDnR0D6lccK0tlK0J0Htsb0Iak-C2rOgrff2smLpJur_tf4agWf_U5Gh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123806073</pqid></control><display><type>article</type><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</creator><creatorcontrib>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</creatorcontrib><description>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO
, respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen (
O
) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of
O
and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote
O
production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2023.132787</identifier><identifier>PMID: 39491991</identifier><language>eng</language><publisher>Netherlands</publisher><subject>anodes ; carbon ; cathodes ; cost effectiveness ; decontamination ; drugs ; electrochemistry ; oxidation ; oxygen production ; propranolol ; singlet oxygen ; toxicity</subject><ispartof>Journal of hazardous materials, 2024-02, Vol.463, p.132787, Article 132787</ispartof><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</citedby><cites>FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</cites><orcidid>0000-0003-3196-3443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39491991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Ni</creatorcontrib><creatorcontrib>Ren, Tengfei</creatorcontrib><creatorcontrib>Lu, Kechao</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Zhang, Xiaoyuan</creatorcontrib><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO
, respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen (
O
) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of
O
and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote
O
production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</description><subject>anodes</subject><subject>carbon</subject><subject>cathodes</subject><subject>cost effectiveness</subject><subject>decontamination</subject><subject>drugs</subject><subject>electrochemistry</subject><subject>oxidation</subject><subject>oxygen production</subject><subject>propranolol</subject><subject>singlet oxygen</subject><subject>toxicity</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAURi0Eaoe2jwDykk0G29eJ7SUaUUCqxAbW0Y1zUzJy4mI7gvD0zWgG1qy-zfnujw5jb6TYSyGb98f98Qf-mbDslVCwl6CMNS_YTloDFQA0L9lOgNAVWKev2eucj0IIaWp9xa7BaSedkzu2HjB1ca46zNRzCuRLih4LhrWMnvcLhmqiqUs4E89rLjTxLoYtU-Z5nB8DFR5_r48086cU-8WXMc58iIkvoSQcMBf-Czec9-TjXHAaZzwxt-zVgCHT3SVv2Pf7j98On6uHr5--HD48VB60KpVzXaPsYAidlfVgPBholAOBnhrjLYF2QpFWAJ0bPFEjAYe-BtegU9rDDXt3nrud93OhXNppzJ5C2D6KS25B1lpa22j3H6gCKxphYEPrM-pTzDnR0D6lccK0tlK0J0Htsb0Iak-C2rOgrff2smLpJur_tf4agWf_U5Gh</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Yan, Ni</creator><creator>Ren, Tengfei</creator><creator>Lu, Kechao</creator><creator>Gao, Yifan</creator><creator>Sun, Meng</creator><creator>Huang, Xia</creator><creator>Zhang, Xiaoyuan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3196-3443</orcidid></search><sort><creationdate>20240205</creationdate><title>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</title><author>Yan, Ni ; Ren, Tengfei ; Lu, Kechao ; Gao, Yifan ; Sun, Meng ; Huang, Xia ; Zhang, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-99b628f7ea9815f7c37362930ace67c8e34902e4233b9fcee613afd5396a924c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>carbon</topic><topic>cathodes</topic><topic>cost effectiveness</topic><topic>decontamination</topic><topic>drugs</topic><topic>electrochemistry</topic><topic>oxidation</topic><topic>oxygen production</topic><topic>propranolol</topic><topic>singlet oxygen</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ni</creatorcontrib><creatorcontrib>Ren, Tengfei</creatorcontrib><creatorcontrib>Lu, Kechao</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Zhang, Xiaoyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ni</au><au>Ren, Tengfei</au><au>Lu, Kechao</au><au>Gao, Yifan</au><au>Sun, Meng</au><au>Huang, Xia</au><au>Zhang, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-02-05</date><risdate>2024</risdate><volume>463</volume><spage>132787</spage><pages>132787-</pages><artnum>132787</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO
, respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen (
O
) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of
O
and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote
O
production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.</abstract><cop>Netherlands</cop><pmid>39491991</pmid><doi>10.1016/j.jhazmat.2023.132787</doi><orcidid>https://orcid.org/0000-0003-3196-3443</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2024-02, Vol.463, p.132787, Article 132787 |
issn | 0304-3894 1873-3336 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154188649 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | anodes carbon cathodes cost effectiveness decontamination drugs electrochemistry oxidation oxygen production propranolol singlet oxygen toxicity |
title | Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-based%20electrocatalytic%20dual-membrane%20system%20bolsters%20singlet%20oxygen%20production%20for%20ultrafast%20water%20decontamination&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Yan,%20Ni&rft.date=2024-02-05&rft.volume=463&rft.spage=132787&rft.pages=132787-&rft.artnum=132787&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2023.132787&rft_dat=%3Cproquest_cross%3E3154188649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123806073&rft_id=info:pmid/39491991&rfr_iscdi=true |