Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii
This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomi...
Gespeichert in:
Veröffentlicht in: | Plant pathology 2024-12, Vol.73 (9), p.2500-2515 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2515 |
---|---|
container_issue | 9 |
container_start_page | 2500 |
container_title | Plant pathology |
container_volume | 73 |
creator | Tatmiya, Ritisha N. Padhiyar, Shital M. Chandramohan, Sangh Bera, Sandip K. Bhatt, Shradda B. Iquebal, Mir Asif Ambalam, Padma S. Tomar, Rukam S. |
description | This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii.
Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization. |
doi_str_mv | 10.1111/ppa.13987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154187371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154187371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</originalsourceid><addsrcrecordid>eNp10c1qHSEUB3ApLfQ2yaJvIHSTLCbxY75cXi5NGwg0kGY9nOscbwwzatVpmBfqc9bb21WhbgT9efT4J-QjZ9e8jJsQ4JpL1XdvyIbLtqkka9RbsmFMior1rXhPPqT0whhvlOo35NfOzwEiZPsTaY7gko42ZD8jDdEbO1l3oN7QiMmmDC5TcCNNS9IYst1PSA_RL250S6aX2wj62Sb6vAZ_AIQrekDn8xowUeuONYJ3qdzjaco40-hzWTeos_WOalgSjnS_0kc9Ydmzy5FMJll7Tt4ZmBJe_J3PyNPt5--7r9X9ty93u-19pYVgXSXqWknZQy0UKjBSMjGOEvegatmNpmeq20PDodgWRsZNy2TfSN3JXkkBUp6Ry1Pd0vyPBVMeZltanSZw6Jc0SN7UvO9kxwv99A998Ut05XVFibZ8byfaoq5OSkefUkQzhGhniOvA2XBMbCiJDX8SK_bmZF_thOv_4fDwsD2d-A0D9pr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126599726</pqid></control><display><type>article</type><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</creator><creatorcontrib>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</creatorcontrib><description>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii.
Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</description><identifier>ISSN: 0032-0862</identifier><identifier>EISSN: 1365-3059</identifier><identifier>DOI: 10.1111/ppa.13987</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Acid resistance ; Arachis hypogaea ; Athelia rolfsii ; Biomarkers ; Developmental stages ; differentially expressed genes ; EST‐SSR ; Expressed sequence tags ; gene expression regulation ; Gene mapping ; Gene regulation ; gene regulatory networks ; Genes ; Genetic diversity ; genetic variation ; genotype ; Genotypes ; groundnut ; Groundnuts ; Inoculation ; Jasmonic acid ; Metabolic pathways ; metabolism ; Nucleotides ; Oxidation resistance ; Pathogenesis ; peanuts ; Photosynthesis ; Plant breeding ; Plant layout ; plant pathology ; Plants (botany) ; Proteolysis ; Quantitative trait loci ; Regulatory sequences ; root rot ; Sclerotium rolfsii ; sequence analysis ; Signal transduction ; Single-nucleotide polymorphism ; Stem rot ; systemic acquired resistance ; Transcription activation ; Transcription factors ; transcriptome ; Transcriptomes ; Transcriptomics ; unigenes</subject><ispartof>Plant pathology, 2024-12, Vol.73 (9), p.2500-2515</ispartof><rights>2024 British Society for Plant Pathology.</rights><rights>Plant Pathology © 2024 British Society for Plant Pathology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</cites><orcidid>0000-0001-9156-5311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppa.13987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppa.13987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tatmiya, Ritisha N.</creatorcontrib><creatorcontrib>Padhiyar, Shital M.</creatorcontrib><creatorcontrib>Chandramohan, Sangh</creatorcontrib><creatorcontrib>Bera, Sandip K.</creatorcontrib><creatorcontrib>Bhatt, Shradda B.</creatorcontrib><creatorcontrib>Iquebal, Mir Asif</creatorcontrib><creatorcontrib>Ambalam, Padma S.</creatorcontrib><creatorcontrib>Tomar, Rukam S.</creatorcontrib><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><title>Plant pathology</title><description>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii.
Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</description><subject>Acid resistance</subject><subject>Arachis hypogaea</subject><subject>Athelia rolfsii</subject><subject>Biomarkers</subject><subject>Developmental stages</subject><subject>differentially expressed genes</subject><subject>EST‐SSR</subject><subject>Expressed sequence tags</subject><subject>gene expression regulation</subject><subject>Gene mapping</subject><subject>Gene regulation</subject><subject>gene regulatory networks</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>genotype</subject><subject>Genotypes</subject><subject>groundnut</subject><subject>Groundnuts</subject><subject>Inoculation</subject><subject>Jasmonic acid</subject><subject>Metabolic pathways</subject><subject>metabolism</subject><subject>Nucleotides</subject><subject>Oxidation resistance</subject><subject>Pathogenesis</subject><subject>peanuts</subject><subject>Photosynthesis</subject><subject>Plant breeding</subject><subject>Plant layout</subject><subject>plant pathology</subject><subject>Plants (botany)</subject><subject>Proteolysis</subject><subject>Quantitative trait loci</subject><subject>Regulatory sequences</subject><subject>root rot</subject><subject>Sclerotium rolfsii</subject><subject>sequence analysis</subject><subject>Signal transduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Stem rot</subject><subject>systemic acquired resistance</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>unigenes</subject><issn>0032-0862</issn><issn>1365-3059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10c1qHSEUB3ApLfQ2yaJvIHSTLCbxY75cXi5NGwg0kGY9nOscbwwzatVpmBfqc9bb21WhbgT9efT4J-QjZ9e8jJsQ4JpL1XdvyIbLtqkka9RbsmFMior1rXhPPqT0whhvlOo35NfOzwEiZPsTaY7gko42ZD8jDdEbO1l3oN7QiMmmDC5TcCNNS9IYst1PSA_RL250S6aX2wj62Sb6vAZ_AIQrekDn8xowUeuONYJ3qdzjaco40-hzWTeos_WOalgSjnS_0kc9Ydmzy5FMJll7Tt4ZmBJe_J3PyNPt5--7r9X9ty93u-19pYVgXSXqWknZQy0UKjBSMjGOEvegatmNpmeq20PDodgWRsZNy2TfSN3JXkkBUp6Ry1Pd0vyPBVMeZltanSZw6Jc0SN7UvO9kxwv99A998Ut05XVFibZ8byfaoq5OSkefUkQzhGhniOvA2XBMbCiJDX8SK_bmZF_thOv_4fDwsD2d-A0D9pr7</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Tatmiya, Ritisha N.</creator><creator>Padhiyar, Shital M.</creator><creator>Chandramohan, Sangh</creator><creator>Bera, Sandip K.</creator><creator>Bhatt, Shradda B.</creator><creator>Iquebal, Mir Asif</creator><creator>Ambalam, Padma S.</creator><creator>Tomar, Rukam S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9156-5311</orcidid></search><sort><creationdate>202412</creationdate><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><author>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid resistance</topic><topic>Arachis hypogaea</topic><topic>Athelia rolfsii</topic><topic>Biomarkers</topic><topic>Developmental stages</topic><topic>differentially expressed genes</topic><topic>EST‐SSR</topic><topic>Expressed sequence tags</topic><topic>gene expression regulation</topic><topic>Gene mapping</topic><topic>Gene regulation</topic><topic>gene regulatory networks</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>genotype</topic><topic>Genotypes</topic><topic>groundnut</topic><topic>Groundnuts</topic><topic>Inoculation</topic><topic>Jasmonic acid</topic><topic>Metabolic pathways</topic><topic>metabolism</topic><topic>Nucleotides</topic><topic>Oxidation resistance</topic><topic>Pathogenesis</topic><topic>peanuts</topic><topic>Photosynthesis</topic><topic>Plant breeding</topic><topic>Plant layout</topic><topic>plant pathology</topic><topic>Plants (botany)</topic><topic>Proteolysis</topic><topic>Quantitative trait loci</topic><topic>Regulatory sequences</topic><topic>root rot</topic><topic>Sclerotium rolfsii</topic><topic>sequence analysis</topic><topic>Signal transduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Stem rot</topic><topic>systemic acquired resistance</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>unigenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatmiya, Ritisha N.</creatorcontrib><creatorcontrib>Padhiyar, Shital M.</creatorcontrib><creatorcontrib>Chandramohan, Sangh</creatorcontrib><creatorcontrib>Bera, Sandip K.</creatorcontrib><creatorcontrib>Bhatt, Shradda B.</creatorcontrib><creatorcontrib>Iquebal, Mir Asif</creatorcontrib><creatorcontrib>Ambalam, Padma S.</creatorcontrib><creatorcontrib>Tomar, Rukam S.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatmiya, Ritisha N.</au><au>Padhiyar, Shital M.</au><au>Chandramohan, Sangh</au><au>Bera, Sandip K.</au><au>Bhatt, Shradda B.</au><au>Iquebal, Mir Asif</au><au>Ambalam, Padma S.</au><au>Tomar, Rukam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</atitle><jtitle>Plant pathology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>73</volume><issue>9</issue><spage>2500</spage><epage>2515</epage><pages>2500-2515</pages><issn>0032-0862</issn><eissn>1365-3059</eissn><abstract>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii.
Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ppa.13987</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9156-5311</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0862 |
ispartof | Plant pathology, 2024-12, Vol.73 (9), p.2500-2515 |
issn | 0032-0862 1365-3059 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154187371 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acid resistance Arachis hypogaea Athelia rolfsii Biomarkers Developmental stages differentially expressed genes EST‐SSR Expressed sequence tags gene expression regulation Gene mapping Gene regulation gene regulatory networks Genes Genetic diversity genetic variation genotype Genotypes groundnut Groundnuts Inoculation Jasmonic acid Metabolic pathways metabolism Nucleotides Oxidation resistance Pathogenesis peanuts Photosynthesis Plant breeding Plant layout plant pathology Plants (botany) Proteolysis Quantitative trait loci Regulatory sequences root rot Sclerotium rolfsii sequence analysis Signal transduction Single-nucleotide polymorphism Stem rot systemic acquired resistance Transcription activation Transcription factors transcriptome Transcriptomes Transcriptomics unigenes |
title | Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptome%20profiling%20of%20resistant%20and%20susceptible%20groundnut%20(Arachis%20hypogaea)%20genotypes%20in%20response%20to%20stem%20rot%20infection%20caused%20by%20Sclerotium%20rolfsii&rft.jtitle=Plant%20pathology&rft.au=Tatmiya,%20Ritisha%20N.&rft.date=2024-12&rft.volume=73&rft.issue=9&rft.spage=2500&rft.epage=2515&rft.pages=2500-2515&rft.issn=0032-0862&rft.eissn=1365-3059&rft_id=info:doi/10.1111/ppa.13987&rft_dat=%3Cproquest_cross%3E3154187371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126599726&rft_id=info:pmid/&rfr_iscdi=true |