Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii

This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant pathology 2024-12, Vol.73 (9), p.2500-2515
Hauptverfasser: Tatmiya, Ritisha N., Padhiyar, Shital M., Chandramohan, Sangh, Bera, Sandip K., Bhatt, Shradda B., Iquebal, Mir Asif, Ambalam, Padma S., Tomar, Rukam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2515
container_issue 9
container_start_page 2500
container_title Plant pathology
container_volume 73
creator Tatmiya, Ritisha N.
Padhiyar, Shital M.
Chandramohan, Sangh
Bera, Sandip K.
Bhatt, Shradda B.
Iquebal, Mir Asif
Ambalam, Padma S.
Tomar, Rukam S.
description This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii. Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.
doi_str_mv 10.1111/ppa.13987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154187371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154187371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</originalsourceid><addsrcrecordid>eNp10c1qHSEUB3ApLfQ2yaJvIHSTLCbxY75cXi5NGwg0kGY9nOscbwwzatVpmBfqc9bb21WhbgT9efT4J-QjZ9e8jJsQ4JpL1XdvyIbLtqkka9RbsmFMior1rXhPPqT0whhvlOo35NfOzwEiZPsTaY7gko42ZD8jDdEbO1l3oN7QiMmmDC5TcCNNS9IYst1PSA_RL250S6aX2wj62Sb6vAZ_AIQrekDn8xowUeuONYJ3qdzjaco40-hzWTeos_WOalgSjnS_0kc9Ydmzy5FMJll7Tt4ZmBJe_J3PyNPt5--7r9X9ty93u-19pYVgXSXqWknZQy0UKjBSMjGOEvegatmNpmeq20PDodgWRsZNy2TfSN3JXkkBUp6Ry1Pd0vyPBVMeZltanSZw6Jc0SN7UvO9kxwv99A998Ut05XVFibZ8byfaoq5OSkefUkQzhGhniOvA2XBMbCiJDX8SK_bmZF_thOv_4fDwsD2d-A0D9pr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126599726</pqid></control><display><type>article</type><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</creator><creatorcontrib>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</creatorcontrib><description>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii. Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</description><identifier>ISSN: 0032-0862</identifier><identifier>EISSN: 1365-3059</identifier><identifier>DOI: 10.1111/ppa.13987</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Acid resistance ; Arachis hypogaea ; Athelia rolfsii ; Biomarkers ; Developmental stages ; differentially expressed genes ; EST‐SSR ; Expressed sequence tags ; gene expression regulation ; Gene mapping ; Gene regulation ; gene regulatory networks ; Genes ; Genetic diversity ; genetic variation ; genotype ; Genotypes ; groundnut ; Groundnuts ; Inoculation ; Jasmonic acid ; Metabolic pathways ; metabolism ; Nucleotides ; Oxidation resistance ; Pathogenesis ; peanuts ; Photosynthesis ; Plant breeding ; Plant layout ; plant pathology ; Plants (botany) ; Proteolysis ; Quantitative trait loci ; Regulatory sequences ; root rot ; Sclerotium rolfsii ; sequence analysis ; Signal transduction ; Single-nucleotide polymorphism ; Stem rot ; systemic acquired resistance ; Transcription activation ; Transcription factors ; transcriptome ; Transcriptomes ; Transcriptomics ; unigenes</subject><ispartof>Plant pathology, 2024-12, Vol.73 (9), p.2500-2515</ispartof><rights>2024 British Society for Plant Pathology.</rights><rights>Plant Pathology © 2024 British Society for Plant Pathology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</cites><orcidid>0000-0001-9156-5311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppa.13987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppa.13987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tatmiya, Ritisha N.</creatorcontrib><creatorcontrib>Padhiyar, Shital M.</creatorcontrib><creatorcontrib>Chandramohan, Sangh</creatorcontrib><creatorcontrib>Bera, Sandip K.</creatorcontrib><creatorcontrib>Bhatt, Shradda B.</creatorcontrib><creatorcontrib>Iquebal, Mir Asif</creatorcontrib><creatorcontrib>Ambalam, Padma S.</creatorcontrib><creatorcontrib>Tomar, Rukam S.</creatorcontrib><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><title>Plant pathology</title><description>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii. Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</description><subject>Acid resistance</subject><subject>Arachis hypogaea</subject><subject>Athelia rolfsii</subject><subject>Biomarkers</subject><subject>Developmental stages</subject><subject>differentially expressed genes</subject><subject>EST‐SSR</subject><subject>Expressed sequence tags</subject><subject>gene expression regulation</subject><subject>Gene mapping</subject><subject>Gene regulation</subject><subject>gene regulatory networks</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>genotype</subject><subject>Genotypes</subject><subject>groundnut</subject><subject>Groundnuts</subject><subject>Inoculation</subject><subject>Jasmonic acid</subject><subject>Metabolic pathways</subject><subject>metabolism</subject><subject>Nucleotides</subject><subject>Oxidation resistance</subject><subject>Pathogenesis</subject><subject>peanuts</subject><subject>Photosynthesis</subject><subject>Plant breeding</subject><subject>Plant layout</subject><subject>plant pathology</subject><subject>Plants (botany)</subject><subject>Proteolysis</subject><subject>Quantitative trait loci</subject><subject>Regulatory sequences</subject><subject>root rot</subject><subject>Sclerotium rolfsii</subject><subject>sequence analysis</subject><subject>Signal transduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Stem rot</subject><subject>systemic acquired resistance</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>unigenes</subject><issn>0032-0862</issn><issn>1365-3059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10c1qHSEUB3ApLfQ2yaJvIHSTLCbxY75cXi5NGwg0kGY9nOscbwwzatVpmBfqc9bb21WhbgT9efT4J-QjZ9e8jJsQ4JpL1XdvyIbLtqkka9RbsmFMior1rXhPPqT0whhvlOo35NfOzwEiZPsTaY7gko42ZD8jDdEbO1l3oN7QiMmmDC5TcCNNS9IYst1PSA_RL250S6aX2wj62Sb6vAZ_AIQrekDn8xowUeuONYJ3qdzjaco40-hzWTeos_WOalgSjnS_0kc9Ydmzy5FMJll7Tt4ZmBJe_J3PyNPt5--7r9X9ty93u-19pYVgXSXqWknZQy0UKjBSMjGOEvegatmNpmeq20PDodgWRsZNy2TfSN3JXkkBUp6Ry1Pd0vyPBVMeZltanSZw6Jc0SN7UvO9kxwv99A998Ut05XVFibZ8byfaoq5OSkefUkQzhGhniOvA2XBMbCiJDX8SK_bmZF_thOv_4fDwsD2d-A0D9pr7</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Tatmiya, Ritisha N.</creator><creator>Padhiyar, Shital M.</creator><creator>Chandramohan, Sangh</creator><creator>Bera, Sandip K.</creator><creator>Bhatt, Shradda B.</creator><creator>Iquebal, Mir Asif</creator><creator>Ambalam, Padma S.</creator><creator>Tomar, Rukam S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9156-5311</orcidid></search><sort><creationdate>202412</creationdate><title>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</title><author>Tatmiya, Ritisha N. ; Padhiyar, Shital M. ; Chandramohan, Sangh ; Bera, Sandip K. ; Bhatt, Shradda B. ; Iquebal, Mir Asif ; Ambalam, Padma S. ; Tomar, Rukam S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2207-2449338a429e9af3302dd3eba9437df8097ba51a2076ad01f603853c738932a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid resistance</topic><topic>Arachis hypogaea</topic><topic>Athelia rolfsii</topic><topic>Biomarkers</topic><topic>Developmental stages</topic><topic>differentially expressed genes</topic><topic>EST‐SSR</topic><topic>Expressed sequence tags</topic><topic>gene expression regulation</topic><topic>Gene mapping</topic><topic>Gene regulation</topic><topic>gene regulatory networks</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>genotype</topic><topic>Genotypes</topic><topic>groundnut</topic><topic>Groundnuts</topic><topic>Inoculation</topic><topic>Jasmonic acid</topic><topic>Metabolic pathways</topic><topic>metabolism</topic><topic>Nucleotides</topic><topic>Oxidation resistance</topic><topic>Pathogenesis</topic><topic>peanuts</topic><topic>Photosynthesis</topic><topic>Plant breeding</topic><topic>Plant layout</topic><topic>plant pathology</topic><topic>Plants (botany)</topic><topic>Proteolysis</topic><topic>Quantitative trait loci</topic><topic>Regulatory sequences</topic><topic>root rot</topic><topic>Sclerotium rolfsii</topic><topic>sequence analysis</topic><topic>Signal transduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Stem rot</topic><topic>systemic acquired resistance</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>unigenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatmiya, Ritisha N.</creatorcontrib><creatorcontrib>Padhiyar, Shital M.</creatorcontrib><creatorcontrib>Chandramohan, Sangh</creatorcontrib><creatorcontrib>Bera, Sandip K.</creatorcontrib><creatorcontrib>Bhatt, Shradda B.</creatorcontrib><creatorcontrib>Iquebal, Mir Asif</creatorcontrib><creatorcontrib>Ambalam, Padma S.</creatorcontrib><creatorcontrib>Tomar, Rukam S.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatmiya, Ritisha N.</au><au>Padhiyar, Shital M.</au><au>Chandramohan, Sangh</au><au>Bera, Sandip K.</au><au>Bhatt, Shradda B.</au><au>Iquebal, Mir Asif</au><au>Ambalam, Padma S.</au><au>Tomar, Rukam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii</atitle><jtitle>Plant pathology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>73</volume><issue>9</issue><spage>2500</spage><epage>2515</epage><pages>2500-2515</pages><issn>0032-0862</issn><eissn>1365-3059</eissn><abstract>This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (Arachis hypogaea) genotypes exposed to Sclerotium rolfsii infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and S. rolfsii. Using transcriptome sequencing, the differentially expressed genes responsible for the resistance towards the stem rot in groundnut were identified along with their functional categorization.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ppa.13987</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9156-5311</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0862
ispartof Plant pathology, 2024-12, Vol.73 (9), p.2500-2515
issn 0032-0862
1365-3059
language eng
recordid cdi_proquest_miscellaneous_3154187371
source Wiley Online Library Journals Frontfile Complete
subjects Acid resistance
Arachis hypogaea
Athelia rolfsii
Biomarkers
Developmental stages
differentially expressed genes
EST‐SSR
Expressed sequence tags
gene expression regulation
Gene mapping
Gene regulation
gene regulatory networks
Genes
Genetic diversity
genetic variation
genotype
Genotypes
groundnut
Groundnuts
Inoculation
Jasmonic acid
Metabolic pathways
metabolism
Nucleotides
Oxidation resistance
Pathogenesis
peanuts
Photosynthesis
Plant breeding
Plant layout
plant pathology
Plants (botany)
Proteolysis
Quantitative trait loci
Regulatory sequences
root rot
Sclerotium rolfsii
sequence analysis
Signal transduction
Single-nucleotide polymorphism
Stem rot
systemic acquired resistance
Transcription activation
Transcription factors
transcriptome
Transcriptomes
Transcriptomics
unigenes
title Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptome%20profiling%20of%20resistant%20and%20susceptible%20groundnut%20(Arachis%20hypogaea)%20genotypes%20in%20response%20to%20stem%20rot%20infection%20caused%20by%20Sclerotium%20rolfsii&rft.jtitle=Plant%20pathology&rft.au=Tatmiya,%20Ritisha%20N.&rft.date=2024-12&rft.volume=73&rft.issue=9&rft.spage=2500&rft.epage=2515&rft.pages=2500-2515&rft.issn=0032-0862&rft.eissn=1365-3059&rft_id=info:doi/10.1111/ppa.13987&rft_dat=%3Cproquest_cross%3E3154187371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126599726&rft_id=info:pmid/&rfr_iscdi=true