Synthesis of Porous Red Mud/Slag-Based Spherical Geopolymers for Efficient Methylene Blue and Ni2+ Removal from Water
To reuse red mud and slag wastes as raw materials, a green type of porous spherical red mud/slag-based geopolymer (RSG) was synthesized by utilizing suspension curing and foaming techniques. Because methylene blue (MB) and nickel ion (Ni2+) were common and difficult to treat in wastewater, the adsor...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-11, Vol.40 (45), p.23882-23894 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To reuse red mud and slag wastes as raw materials, a green type of porous spherical red mud/slag-based geopolymer (RSG) was synthesized by utilizing suspension curing and foaming techniques. Because methylene blue (MB) and nickel ion (Ni2+) were common and difficult to treat in wastewater, the adsorption characteristics of MB and Ni2+, as well as the phase and microstructure of the porous RSG spheres prior to and after adsorption, were thoroughly investigated. The porous RSG spheres showed a stable and mesoporous structure with a BET surface area of 31.36 m2/g. The spheres achieved the maximum removal efficiencies of 99.81% (MB) and 99.01% (Ni2+) at dosages of 16 and 10 g/L, respectively. The pseudo-second-order kinetic model and the Langmuir model could match the adsorption data of these spheres, with predicted maximum adsorption capacity (Q max) values of 19.88 mg/g for MB and 12.39 mg/g for Ni2+, respectively. After three adsorption–desorption cycles, porous RSG spheres demonstrated good recycling capability with removal efficiencies of 98.10% (MB) and 54.60% (Ni2+). The spheres were also effective in adsorbing additional dyes (methyl orange (MO), crystal violet (CV), and malachite green (MG)) and heavy metal ions (Cd2+, Pb2+, Zn2+, and Cu2+). The spheres have potential use in water treatment. |
---|---|
ISSN: | 0743-7463 1520-5827 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c02930 |