Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions

The emission of greenhouse gases (GHGs) has escalated to unprecedented levels due to the extensive use of fossil fuels for industrial development and population growth. Consequently, the transition to clean and renewable energy sources is critical for mitigating climate change. Hydrogen is considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-11, Vol.38 (21), p.19992-20014
Hauptverfasser: Jazani, Omid, Adejumo, Moses, Elharati, Mohamed A., Liguori, Simona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20014
container_issue 21
container_start_page 19992
container_title Energy & fuels
container_volume 38
creator Jazani, Omid
Adejumo, Moses
Elharati, Mohamed A.
Liguori, Simona
description The emission of greenhouse gases (GHGs) has escalated to unprecedented levels due to the extensive use of fossil fuels for industrial development and population growth. Consequently, the transition to clean and renewable energy sources is critical for mitigating climate change. Hydrogen is considered a promising energy carrier that can be produced from both conventional (fossil fuels) and renewable resources (biofuels and water). Among renewable sources, ethanol is favored over other bioalcohols because it has a high energy content and is less toxic than hydrocarbon fuels. In addition, ethanol reforming represents a viable method of efficiently producing renewable hydrogen. To enhance this process, innovative technologies have been developed, particularly through the use of a membrane reactor (MR) technology. In MRs, the reaction and separation processes occur simultaneously, which improves the selectivity and yield while reducing operating conditions and preventing coke formation. This study aims to highlight recent advancements in ethanol reforming reactionsincluding steam reforming, partial oxidation, and autothermal reforming reactionsto produce renewable, low-carbon hydrogen using MR technology. In particular, the central focus is to provide a comprehensive analysis of the performance of different MRs, shedding light on their efficacy, scalability, and potential limitations in the context of renewable hydrogen production from ethanol reforming. By exploring these aspects, this study attempts to inform strategic decisions and advancements in sustainable energy technologies, facilitating the transition toward a greener, more resilient energy landscape.
doi_str_mv 10.1021/acs.energyfuels.4c02755
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154186581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154186581</sourcerecordid><originalsourceid>FETCH-LOGICAL-a210t-b9e535d6baea61cf0e439a826d01dd8e714a1420786fd51938119d0820dd770d3</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwG8iRS4eTNm3KbRobQxoCIThXaeOOTm0yknZo_Ho6ugM3Tn6y32fZj5BrBhMGnN2qwk_QoFvvyw5rP4kK4IkQJ2TEBIdAAE9PyQikTAKIeXROLrzfAEAcSjEi3yv7FcyUy62hy712do2Gvjiru6Kt-t6uUnTefihja_qKpXVNZda9Ur9jTytDn7DJnTI4dK3zd70q0LR0qnfKFOipMpouurZzSO8rhwN7Sc5KVXu8OtYxeV_M32bLYPX88DibrgLFGbRBnqIIhY5zhSpmRQkYhamSPNbAtJaYsEixiEMi41ILloaSsVSD5KB1koAOx-Rm2Lt19rND32ZN5Qus6_5m2_ksZCJiMhaS9dZksBbOeu-wzLauapTbZwyyQ9pZn3b2J-3smHZPhgN5MGxs50z_0r_UD7ulizw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154186581</pqid></control><display><type>article</type><title>Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions</title><source>ACS Publications</source><creator>Jazani, Omid ; Adejumo, Moses ; Elharati, Mohamed A. ; Liguori, Simona</creator><creatorcontrib>Jazani, Omid ; Adejumo, Moses ; Elharati, Mohamed A. ; Liguori, Simona</creatorcontrib><description>The emission of greenhouse gases (GHGs) has escalated to unprecedented levels due to the extensive use of fossil fuels for industrial development and population growth. Consequently, the transition to clean and renewable energy sources is critical for mitigating climate change. Hydrogen is considered a promising energy carrier that can be produced from both conventional (fossil fuels) and renewable resources (biofuels and water). Among renewable sources, ethanol is favored over other bioalcohols because it has a high energy content and is less toxic than hydrocarbon fuels. In addition, ethanol reforming represents a viable method of efficiently producing renewable hydrogen. To enhance this process, innovative technologies have been developed, particularly through the use of a membrane reactor (MR) technology. In MRs, the reaction and separation processes occur simultaneously, which improves the selectivity and yield while reducing operating conditions and preventing coke formation. This study aims to highlight recent advancements in ethanol reforming reactionsincluding steam reforming, partial oxidation, and autothermal reforming reactionsto produce renewable, low-carbon hydrogen using MR technology. In particular, the central focus is to provide a comprehensive analysis of the performance of different MRs, shedding light on their efficacy, scalability, and potential limitations in the context of renewable hydrogen production from ethanol reforming. By exploring these aspects, this study attempts to inform strategic decisions and advancements in sustainable energy technologies, facilitating the transition toward a greener, more resilient energy landscape.</description><identifier>ISSN: 0887-0624</identifier><identifier>ISSN: 1520-5029</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.4c02755</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>biofuels ; climate change ; energy ; energy content ; ethanol ; hydrogen ; hydrogen production ; industrialization ; oxidation ; population growth ; steam ; toxicity</subject><ispartof>Energy &amp; fuels, 2024-11, Vol.38 (21), p.19992-20014</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a210t-b9e535d6baea61cf0e439a826d01dd8e714a1420786fd51938119d0820dd770d3</cites><orcidid>0000-0001-9061-0475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.4c02755$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02755$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Jazani, Omid</creatorcontrib><creatorcontrib>Adejumo, Moses</creatorcontrib><creatorcontrib>Elharati, Mohamed A.</creatorcontrib><creatorcontrib>Liguori, Simona</creatorcontrib><title>Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The emission of greenhouse gases (GHGs) has escalated to unprecedented levels due to the extensive use of fossil fuels for industrial development and population growth. Consequently, the transition to clean and renewable energy sources is critical for mitigating climate change. Hydrogen is considered a promising energy carrier that can be produced from both conventional (fossil fuels) and renewable resources (biofuels and water). Among renewable sources, ethanol is favored over other bioalcohols because it has a high energy content and is less toxic than hydrocarbon fuels. In addition, ethanol reforming represents a viable method of efficiently producing renewable hydrogen. To enhance this process, innovative technologies have been developed, particularly through the use of a membrane reactor (MR) technology. In MRs, the reaction and separation processes occur simultaneously, which improves the selectivity and yield while reducing operating conditions and preventing coke formation. This study aims to highlight recent advancements in ethanol reforming reactionsincluding steam reforming, partial oxidation, and autothermal reforming reactionsto produce renewable, low-carbon hydrogen using MR technology. In particular, the central focus is to provide a comprehensive analysis of the performance of different MRs, shedding light on their efficacy, scalability, and potential limitations in the context of renewable hydrogen production from ethanol reforming. By exploring these aspects, this study attempts to inform strategic decisions and advancements in sustainable energy technologies, facilitating the transition toward a greener, more resilient energy landscape.</description><subject>biofuels</subject><subject>climate change</subject><subject>energy</subject><subject>energy content</subject><subject>ethanol</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>industrialization</subject><subject>oxidation</subject><subject>population growth</subject><subject>steam</subject><subject>toxicity</subject><issn>0887-0624</issn><issn>1520-5029</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwG8iRS4eTNm3KbRobQxoCIThXaeOOTm0yknZo_Ho6ugM3Tn6y32fZj5BrBhMGnN2qwk_QoFvvyw5rP4kK4IkQJ2TEBIdAAE9PyQikTAKIeXROLrzfAEAcSjEi3yv7FcyUy62hy712do2Gvjiru6Kt-t6uUnTefihja_qKpXVNZda9Ur9jTytDn7DJnTI4dK3zd70q0LR0qnfKFOipMpouurZzSO8rhwN7Sc5KVXu8OtYxeV_M32bLYPX88DibrgLFGbRBnqIIhY5zhSpmRQkYhamSPNbAtJaYsEixiEMi41ILloaSsVSD5KB1koAOx-Rm2Lt19rND32ZN5Qus6_5m2_ksZCJiMhaS9dZksBbOeu-wzLauapTbZwyyQ9pZn3b2J-3smHZPhgN5MGxs50z_0r_UD7ulizw</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Jazani, Omid</creator><creator>Adejumo, Moses</creator><creator>Elharati, Mohamed A.</creator><creator>Liguori, Simona</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9061-0475</orcidid></search><sort><creationdate>20241107</creationdate><title>Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions</title><author>Jazani, Omid ; Adejumo, Moses ; Elharati, Mohamed A. ; Liguori, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a210t-b9e535d6baea61cf0e439a826d01dd8e714a1420786fd51938119d0820dd770d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biofuels</topic><topic>climate change</topic><topic>energy</topic><topic>energy content</topic><topic>ethanol</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>industrialization</topic><topic>oxidation</topic><topic>population growth</topic><topic>steam</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jazani, Omid</creatorcontrib><creatorcontrib>Adejumo, Moses</creatorcontrib><creatorcontrib>Elharati, Mohamed A.</creatorcontrib><creatorcontrib>Liguori, Simona</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jazani, Omid</au><au>Adejumo, Moses</au><au>Elharati, Mohamed A.</au><au>Liguori, Simona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-11-07</date><risdate>2024</risdate><volume>38</volume><issue>21</issue><spage>19992</spage><epage>20014</epage><pages>19992-20014</pages><issn>0887-0624</issn><issn>1520-5029</issn><eissn>1520-5029</eissn><abstract>The emission of greenhouse gases (GHGs) has escalated to unprecedented levels due to the extensive use of fossil fuels for industrial development and population growth. Consequently, the transition to clean and renewable energy sources is critical for mitigating climate change. Hydrogen is considered a promising energy carrier that can be produced from both conventional (fossil fuels) and renewable resources (biofuels and water). Among renewable sources, ethanol is favored over other bioalcohols because it has a high energy content and is less toxic than hydrocarbon fuels. In addition, ethanol reforming represents a viable method of efficiently producing renewable hydrogen. To enhance this process, innovative technologies have been developed, particularly through the use of a membrane reactor (MR) technology. In MRs, the reaction and separation processes occur simultaneously, which improves the selectivity and yield while reducing operating conditions and preventing coke formation. This study aims to highlight recent advancements in ethanol reforming reactionsincluding steam reforming, partial oxidation, and autothermal reforming reactionsto produce renewable, low-carbon hydrogen using MR technology. In particular, the central focus is to provide a comprehensive analysis of the performance of different MRs, shedding light on their efficacy, scalability, and potential limitations in the context of renewable hydrogen production from ethanol reforming. By exploring these aspects, this study attempts to inform strategic decisions and advancements in sustainable energy technologies, facilitating the transition toward a greener, more resilient energy landscape.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.4c02755</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9061-0475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2024-11, Vol.38 (21), p.19992-20014
issn 0887-0624
1520-5029
1520-5029
language eng
recordid cdi_proquest_miscellaneous_3154186581
source ACS Publications
subjects biofuels
climate change
energy
energy content
ethanol
hydrogen
hydrogen production
industrialization
oxidation
population growth
steam
toxicity
title Low-Carbon Hydrogen Production via Ethanol Reforming Reactions in Membrane Reactors: Recent Advances and Future Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Carbon%20Hydrogen%20Production%20via%20Ethanol%20Reforming%20Reactions%20in%20Membrane%20Reactors:%20Recent%20Advances%20and%20Future%20Directions&rft.jtitle=Energy%20&%20fuels&rft.au=Jazani,%20Omid&rft.date=2024-11-07&rft.volume=38&rft.issue=21&rft.spage=19992&rft.epage=20014&rft.pages=19992-20014&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.4c02755&rft_dat=%3Cproquest_cross%3E3154186581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154186581&rft_id=info:pmid/&rfr_iscdi=true