Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)

Key message This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2024-12, Vol.43 (12), p.290-290, Article 290
Hauptverfasser: Occhialini, Alessandro, Reed, Andrew C., Harbison, Stacee A., Sichterman, Megan J., Baumann, Aaron, Pfotenhauer, Alexander C., Li, Li, King, Gabriella, Vincent, Aaron G., Wise-Mitchell, Ashley D., Stewart, C. Neal, Lenaghan, Scott C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 12
container_start_page 290
container_title Plant cell reports
container_volume 43
creator Occhialini, Alessandro
Reed, Andrew C.
Harbison, Stacee A.
Sichterman, Megan J.
Baumann, Aaron
Pfotenhauer, Alexander C.
Li, Li
King, Gabriella
Vincent, Aaron G.
Wise-Mitchell, Ashley D.
Stewart, C. Neal
Lenaghan, Scott C.
description Key message This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture. In order for transplastomic plants to be used in agriculture, the removal of antibiotic selection genes is required. In this work, we developed an optimized strategy to generate homoplasmic marker-free lines of potato ( Solanum tuberosum ) in a single transformation event. To achieve marker-free transplastomic lines, vectors were redesigned to enable integration of the transgene cassette into the plastid genome, while maintaining the selection cassette on the vector backbone. After an initial round of tissue culture with selection, the selective pressure was removed, leading to the elimination of the vector backbone, while retaining the integrated transgene cassette at homoplasmy. Marker-free transplastomic lines produced using this strategy had a normal phenotype, and transgene integration was stable across generations. The new vectors developed in this work for the generation of marker-free transplastomics will represent a valuable alternative platform for routine plastid genetic engineering in higher plants. It is also anticipated that this approach will contribute to speed the path to commercialization of these novel transplastomic plant varieties.
doi_str_mv 10.1007/s00299-024-03375-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154184426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a65f88983e2bf8256589b7c6399cea3b78524b9bfe1198514dddd58c8c983bfb3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oC7gwJG7GBcpvAe4mE_-SiS7UxB0pmFvdNXZBCVTUJ_F1paZbTVwY2XCT-53DvRyEHjL6lFGqnxVKubWEckmoEFoRewttmBSccCo-3UYbqjkjWjN5gu6Vck1pa-ruLjoRVmnDNd-gH2_hWyVbiJD7OqaIpz5_hkyGDIBr7mOZ932paRoDblWs5TmGuB0jQB7jFtcd4LDbp5xuONyc0gT461h3aal4jBW2R-c0HM1XCErr4fepWS4TrouHnEqrzuZU-5qe3Ed3hn5f4MHxPkUfX774cPGaXL579ebi_JIEbmwlfacGY6wRwP1guOqUsV6HTlgboBdeG8Wlt34AxqxRTF61o0wwoWn84MUpOjv4zjl9WaBUN40lwL7NBWkpTjAlmZGSd_-BCs4abGRDH_-FXqclx7bISrVJtLYrxQ9UaLuXDIOb89i-6Ltj1K0Ju0PCriXsbhJ2tokeHa0XP8HVb8mvSBsgDkCZ14Qg_3n7H7Y_AVU4tFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131987794</pqid></control><display><type>article</type><title>Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Occhialini, Alessandro ; Reed, Andrew C. ; Harbison, Stacee A. ; Sichterman, Megan J. ; Baumann, Aaron ; Pfotenhauer, Alexander C. ; Li, Li ; King, Gabriella ; Vincent, Aaron G. ; Wise-Mitchell, Ashley D. ; Stewart, C. Neal ; Lenaghan, Scott C.</creator><creatorcontrib>Occhialini, Alessandro ; Reed, Andrew C. ; Harbison, Stacee A. ; Sichterman, Megan J. ; Baumann, Aaron ; Pfotenhauer, Alexander C. ; Li, Li ; King, Gabriella ; Vincent, Aaron G. ; Wise-Mitchell, Ashley D. ; Stewart, C. Neal ; Lenaghan, Scott C.</creatorcontrib><description>Key message This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture. In order for transplastomic plants to be used in agriculture, the removal of antibiotic selection genes is required. In this work, we developed an optimized strategy to generate homoplasmic marker-free lines of potato ( Solanum tuberosum ) in a single transformation event. To achieve marker-free transplastomic lines, vectors were redesigned to enable integration of the transgene cassette into the plastid genome, while maintaining the selection cassette on the vector backbone. After an initial round of tissue culture with selection, the selective pressure was removed, leading to the elimination of the vector backbone, while retaining the integrated transgene cassette at homoplasmy. Marker-free transplastomic lines produced using this strategy had a normal phenotype, and transgene integration was stable across generations. The new vectors developed in this work for the generation of marker-free transplastomics will represent a valuable alternative platform for routine plastid genetic engineering in higher plants. It is also anticipated that this approach will contribute to speed the path to commercialization of these novel transplastomic plant varieties.</description><identifier>ISSN: 0721-7714</identifier><identifier>ISSN: 1432-203X</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03375-9</identifier><identifier>PMID: 39578272</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; antibiotics ; Biomedical and Life Sciences ; Biotechnology ; Cassettes ; Cell Biology ; chloroplast genome ; Chloroplasts ; Chloroplasts - genetics ; Commercialization ; Crop improvement ; Genes ; Genetic engineering ; Genetic Engineering - methods ; Genetic Markers ; Genetic transformation ; Genetic Vectors - genetics ; Genome, Chloroplast ; Genomes ; Integration ; Life Sciences ; Maternal inheritance ; New varieties ; operon ; Operons ; Original Article ; phenotype ; Phenotypes ; Plant Biochemistry ; Plant Sciences ; Plants, Genetically Modified - genetics ; Potatoes ; Solanum tuberosum ; Solanum tuberosum - genetics ; Tissue culture ; Transformation, Genetic ; Transgenes ; Transgenic plants</subject><ispartof>Plant cell reports, 2024-12, Vol.43 (12), p.290-290, Article 290</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-a65f88983e2bf8256589b7c6399cea3b78524b9bfe1198514dddd58c8c983bfb3</cites><orcidid>0000-0002-7539-1726 ; 0000-0002-1162-798X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-024-03375-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-024-03375-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39578272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Occhialini, Alessandro</creatorcontrib><creatorcontrib>Reed, Andrew C.</creatorcontrib><creatorcontrib>Harbison, Stacee A.</creatorcontrib><creatorcontrib>Sichterman, Megan J.</creatorcontrib><creatorcontrib>Baumann, Aaron</creatorcontrib><creatorcontrib>Pfotenhauer, Alexander C.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>King, Gabriella</creatorcontrib><creatorcontrib>Vincent, Aaron G.</creatorcontrib><creatorcontrib>Wise-Mitchell, Ashley D.</creatorcontrib><creatorcontrib>Stewart, C. Neal</creatorcontrib><creatorcontrib>Lenaghan, Scott C.</creatorcontrib><title>Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture. In order for transplastomic plants to be used in agriculture, the removal of antibiotic selection genes is required. In this work, we developed an optimized strategy to generate homoplasmic marker-free lines of potato ( Solanum tuberosum ) in a single transformation event. To achieve marker-free transplastomic lines, vectors were redesigned to enable integration of the transgene cassette into the plastid genome, while maintaining the selection cassette on the vector backbone. After an initial round of tissue culture with selection, the selective pressure was removed, leading to the elimination of the vector backbone, while retaining the integrated transgene cassette at homoplasmy. Marker-free transplastomic lines produced using this strategy had a normal phenotype, and transgene integration was stable across generations. The new vectors developed in this work for the generation of marker-free transplastomics will represent a valuable alternative platform for routine plastid genetic engineering in higher plants. It is also anticipated that this approach will contribute to speed the path to commercialization of these novel transplastomic plant varieties.</description><subject>Agriculture</subject><subject>antibiotics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cassettes</subject><subject>Cell Biology</subject><subject>chloroplast genome</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Commercialization</subject><subject>Crop improvement</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genetic Markers</subject><subject>Genetic transformation</subject><subject>Genetic Vectors - genetics</subject><subject>Genome, Chloroplast</subject><subject>Genomes</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Maternal inheritance</subject><subject>New varieties</subject><subject>operon</subject><subject>Operons</subject><subject>Original Article</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Potatoes</subject><subject>Solanum tuberosum</subject><subject>Solanum tuberosum - genetics</subject><subject>Tissue culture</subject><subject>Transformation, Genetic</subject><subject>Transgenes</subject><subject>Transgenic plants</subject><issn>0721-7714</issn><issn>1432-203X</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oC7gwJG7GBcpvAe4mE_-SiS7UxB0pmFvdNXZBCVTUJ_F1paZbTVwY2XCT-53DvRyEHjL6lFGqnxVKubWEckmoEFoRewttmBSccCo-3UYbqjkjWjN5gu6Vck1pa-ruLjoRVmnDNd-gH2_hWyVbiJD7OqaIpz5_hkyGDIBr7mOZ932paRoDblWs5TmGuB0jQB7jFtcd4LDbp5xuONyc0gT461h3aal4jBW2R-c0HM1XCErr4fepWS4TrouHnEqrzuZU-5qe3Ed3hn5f4MHxPkUfX774cPGaXL579ebi_JIEbmwlfacGY6wRwP1guOqUsV6HTlgboBdeG8Wlt34AxqxRTF61o0wwoWn84MUpOjv4zjl9WaBUN40lwL7NBWkpTjAlmZGSd_-BCs4abGRDH_-FXqclx7bISrVJtLYrxQ9UaLuXDIOb89i-6Ltj1K0Ju0PCriXsbhJ2tokeHa0XP8HVb8mvSBsgDkCZ14Qg_3n7H7Y_AVU4tFE</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Occhialini, Alessandro</creator><creator>Reed, Andrew C.</creator><creator>Harbison, Stacee A.</creator><creator>Sichterman, Megan J.</creator><creator>Baumann, Aaron</creator><creator>Pfotenhauer, Alexander C.</creator><creator>Li, Li</creator><creator>King, Gabriella</creator><creator>Vincent, Aaron G.</creator><creator>Wise-Mitchell, Ashley D.</creator><creator>Stewart, C. Neal</creator><creator>Lenaghan, Scott C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7539-1726</orcidid><orcidid>https://orcid.org/0000-0002-1162-798X</orcidid></search><sort><creationdate>20241201</creationdate><title>Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)</title><author>Occhialini, Alessandro ; Reed, Andrew C. ; Harbison, Stacee A. ; Sichterman, Megan J. ; Baumann, Aaron ; Pfotenhauer, Alexander C. ; Li, Li ; King, Gabriella ; Vincent, Aaron G. ; Wise-Mitchell, Ashley D. ; Stewart, C. Neal ; Lenaghan, Scott C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a65f88983e2bf8256589b7c6399cea3b78524b9bfe1198514dddd58c8c983bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>antibiotics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cassettes</topic><topic>Cell Biology</topic><topic>chloroplast genome</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Commercialization</topic><topic>Crop improvement</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genetic Markers</topic><topic>Genetic transformation</topic><topic>Genetic Vectors - genetics</topic><topic>Genome, Chloroplast</topic><topic>Genomes</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Maternal inheritance</topic><topic>New varieties</topic><topic>operon</topic><topic>Operons</topic><topic>Original Article</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Potatoes</topic><topic>Solanum tuberosum</topic><topic>Solanum tuberosum - genetics</topic><topic>Tissue culture</topic><topic>Transformation, Genetic</topic><topic>Transgenes</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Occhialini, Alessandro</creatorcontrib><creatorcontrib>Reed, Andrew C.</creatorcontrib><creatorcontrib>Harbison, Stacee A.</creatorcontrib><creatorcontrib>Sichterman, Megan J.</creatorcontrib><creatorcontrib>Baumann, Aaron</creatorcontrib><creatorcontrib>Pfotenhauer, Alexander C.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>King, Gabriella</creatorcontrib><creatorcontrib>Vincent, Aaron G.</creatorcontrib><creatorcontrib>Wise-Mitchell, Ashley D.</creatorcontrib><creatorcontrib>Stewart, C. Neal</creatorcontrib><creatorcontrib>Lenaghan, Scott C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Occhialini, Alessandro</au><au>Reed, Andrew C.</au><au>Harbison, Stacee A.</au><au>Sichterman, Megan J.</au><au>Baumann, Aaron</au><au>Pfotenhauer, Alexander C.</au><au>Li, Li</au><au>King, Gabriella</au><au>Vincent, Aaron G.</au><au>Wise-Mitchell, Ashley D.</au><au>Stewart, C. Neal</au><au>Lenaghan, Scott C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>43</volume><issue>12</issue><spage>290</spage><epage>290</epage><pages>290-290</pages><artnum>290</artnum><issn>0721-7714</issn><issn>1432-203X</issn><eissn>1432-203X</eissn><abstract>Key message This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture. In order for transplastomic plants to be used in agriculture, the removal of antibiotic selection genes is required. In this work, we developed an optimized strategy to generate homoplasmic marker-free lines of potato ( Solanum tuberosum ) in a single transformation event. To achieve marker-free transplastomic lines, vectors were redesigned to enable integration of the transgene cassette into the plastid genome, while maintaining the selection cassette on the vector backbone. After an initial round of tissue culture with selection, the selective pressure was removed, leading to the elimination of the vector backbone, while retaining the integrated transgene cassette at homoplasmy. Marker-free transplastomic lines produced using this strategy had a normal phenotype, and transgene integration was stable across generations. The new vectors developed in this work for the generation of marker-free transplastomics will represent a valuable alternative platform for routine plastid genetic engineering in higher plants. It is also anticipated that this approach will contribute to speed the path to commercialization of these novel transplastomic plant varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39578272</pmid><doi>10.1007/s00299-024-03375-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7539-1726</orcidid><orcidid>https://orcid.org/0000-0002-1162-798X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2024-12, Vol.43 (12), p.290-290, Article 290
issn 0721-7714
1432-203X
1432-203X
language eng
recordid cdi_proquest_miscellaneous_3154184426
source MEDLINE; SpringerLink Journals
subjects Agriculture
antibiotics
Biomedical and Life Sciences
Biotechnology
Cassettes
Cell Biology
chloroplast genome
Chloroplasts
Chloroplasts - genetics
Commercialization
Crop improvement
Genes
Genetic engineering
Genetic Engineering - methods
Genetic Markers
Genetic transformation
Genetic Vectors - genetics
Genome, Chloroplast
Genomes
Integration
Life Sciences
Maternal inheritance
New varieties
operon
Operons
Original Article
phenotype
Phenotypes
Plant Biochemistry
Plant Sciences
Plants, Genetically Modified - genetics
Potatoes
Solanum tuberosum
Solanum tuberosum - genetics
Tissue culture
Transformation, Genetic
Transgenes
Transgenic plants
title Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-generation%20marker-free%20transplastomic%20plants:%20engineering%20the%20chloroplast%20genome%20without%20integration%20of%20marker%20genes%20in%20Solanum%20tuberosum%20(potato)&rft.jtitle=Plant%20cell%20reports&rft.au=Occhialini,%20Alessandro&rft.date=2024-12-01&rft.volume=43&rft.issue=12&rft.spage=290&rft.epage=290&rft.pages=290-290&rft.artnum=290&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03375-9&rft_dat=%3Cproquest_cross%3E3132141884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131987794&rft_id=info:pmid/39578272&rfr_iscdi=true