New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone
Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 m...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 2024-12, Vol.762, p.110192, Article 110192 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110192 |
container_title | Archives of biochemistry and biophysics |
container_volume | 762 |
creator | Ly, Thuy T.B. Thi Mai, Thu-Thuy Raffaele, Alessandra Urlacher, Vlada B. Nguyen, Thi Thao Hutter, Michael C. Thi Vu, Hanh-Nguyen Thuy Le, Duong Thi Quach, Tung Ngoc Phi, Quyet-Tien |
description | Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 monooxygenases (P450 or CYP) are attractive candidates due to their ability to perform regio- and stereoselective hydroxylation at allylic C–H bonds. In this study, CYP154C4 from Streptomyces cavourensis YBQ59 was cloned and expressed in Escherichia coli. By screening 64 candidate substrates, this P450 was found to catalyze the regio- and stereoselective hydroxylation of nootkatone, yielding a single product, 3β-hydroxynootkatone. Using a whole-cell E. coli system expressing CYP154C4, supported by the heterologous redox partners YkuN from Bacillus subtilis and FdR from E. coli, 3β-hydroxynootkatone was produced on a preparative scale. The structure of this compound was determined by 1H NMR, 13C NMR, NOESY, HMBC, and HSQC. The kinetics of product formation were analyzed using HPLC, and the Km and Kcat values were calculated. Furthermore, structural insights into the selective hydroxylation of nootkatone were elucidated by molecular docking. 3β-Hydroxynootkatone, recently synthesized semi-synthetically from nootkatone, has been reported to exhibit a higher insecticidal activity than its parent compound. Additionally, the functionalization of nootkatone with N-acyl-2-aminothiazole at the C3 and C2 positions, yielding an α-glucosidase inhibitor, has also been previously described. Therefore, 3β-hydroxynootkatone has great potential for further research and for synthesizing new derivatives with valuable biological activities for agricultural and medicinal applications.
[Display omitted]
•New CYP154C4 from Streptomyces cavourensis YBQ59 was characterized.•CYP154C4 hydroxylates nootkatone to the single product 3β-hydroxynootkatone.•3β-Hydroxynootkatone has never been reported in any biocatalytic system so far.•3β-Hydroxynootkatone has great potential for further research. |
doi_str_mv | 10.1016/j.abb.2024.110192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154182873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000398612400314X</els_id><sourcerecordid>3154182873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1834-550f0cd81d91b1bb5ffd3b552643243db769d0a247208559f501d096991e34a03</originalsourceid><addsrcrecordid>eNqNkU2O1DAQhS0EYnoaDsAGeckmjcs_SSxW0AIGacSPgMWsLCcug5sk7rGThr4WB-FMeNQDS8SqSqVXr_TqI-QRsA0wqJ_uNrbrNpxxuYEy0PwOWQHTdcVEK--SFWNMVLqt4Yyc57xjDEDW_D45E1q20Ei5Istb_E63V-9Bya2kPsWRfpwT7uc4HnvMtLeHuCSccsj06sUHpekek49pzDThlxAraidH84wJS59xwH4OB6Ti18_q69Gl-GOwc4gTjZ5OMc7f7BwnfEDueTtkfHhb1-Tzq5efthfV5bvXb7bPL6seWiErpZhnvWvBaeig65T3TnRK8VoKLoXrmlo7ZrlsOGuV0l4xcCW_1oBCWibW5MnJd5_i9YJ5NmPIPQ6DnTAu2YgSG1reNuI_pFywhstyd03gJO1TzDmhN_sURpuOBpi5AWN2poAxN2DMCUzZeXxrv3Qjur8bf0gUwbOTAMs_DgGTyX3AqUcXUvmpcTH8w_43AT6chA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123072424</pqid></control><display><type>article</type><title>New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ly, Thuy T.B. ; Thi Mai, Thu-Thuy ; Raffaele, Alessandra ; Urlacher, Vlada B. ; Nguyen, Thi Thao ; Hutter, Michael C. ; Thi Vu, Hanh-Nguyen ; Thuy Le, Duong Thi ; Quach, Tung Ngoc ; Phi, Quyet-Tien</creator><creatorcontrib>Ly, Thuy T.B. ; Thi Mai, Thu-Thuy ; Raffaele, Alessandra ; Urlacher, Vlada B. ; Nguyen, Thi Thao ; Hutter, Michael C. ; Thi Vu, Hanh-Nguyen ; Thuy Le, Duong Thi ; Quach, Tung Ngoc ; Phi, Quyet-Tien</creatorcontrib><description>Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 monooxygenases (P450 or CYP) are attractive candidates due to their ability to perform regio- and stereoselective hydroxylation at allylic C–H bonds. In this study, CYP154C4 from Streptomyces cavourensis YBQ59 was cloned and expressed in Escherichia coli. By screening 64 candidate substrates, this P450 was found to catalyze the regio- and stereoselective hydroxylation of nootkatone, yielding a single product, 3β-hydroxynootkatone. Using a whole-cell E. coli system expressing CYP154C4, supported by the heterologous redox partners YkuN from Bacillus subtilis and FdR from E. coli, 3β-hydroxynootkatone was produced on a preparative scale. The structure of this compound was determined by 1H NMR, 13C NMR, NOESY, HMBC, and HSQC. The kinetics of product formation were analyzed using HPLC, and the Km and Kcat values were calculated. Furthermore, structural insights into the selective hydroxylation of nootkatone were elucidated by molecular docking. 3β-Hydroxynootkatone, recently synthesized semi-synthetically from nootkatone, has been reported to exhibit a higher insecticidal activity than its parent compound. Additionally, the functionalization of nootkatone with N-acyl-2-aminothiazole at the C3 and C2 positions, yielding an α-glucosidase inhibitor, has also been previously described. Therefore, 3β-hydroxynootkatone has great potential for further research and for synthesizing new derivatives with valuable biological activities for agricultural and medicinal applications.
[Display omitted]
•New CYP154C4 from Streptomyces cavourensis YBQ59 was characterized.•CYP154C4 hydroxylates nootkatone to the single product 3β-hydroxynootkatone.•3β-Hydroxynootkatone has never been reported in any biocatalytic system so far.•3β-Hydroxynootkatone has great potential for further research.</description><identifier>ISSN: 0003-9861</identifier><identifier>ISSN: 1096-0384</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2024.110192</identifier><identifier>PMID: 39481744</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3β-hydroxynootkatone ; Bacillus subtilis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; biophysics ; cosmetics ; CYP154C4 ; cytochrome P-450 ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Homology modeling ; Hydroxylation ; insecticidal properties ; Kinetics ; Nootkatone ; Polycyclic Sesquiterpenes - chemistry ; Polycyclic Sesquiterpenes - metabolism ; Selective hydroxylation ; Sesquiterpenes - chemistry ; Sesquiterpenes - metabolism ; Stereoisomerism ; stereoselectivity ; Streptomyces - enzymology ; Streptomyces cavourensis ; Substrate Specificity</subject><ispartof>Archives of biochemistry and biophysics, 2024-12, Vol.762, p.110192, Article 110192</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1834-550f0cd81d91b1bb5ffd3b552643243db769d0a247208559f501d096991e34a03</cites><orcidid>0000-0001-5984-7503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000398612400314X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39481744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Thuy T.B.</creatorcontrib><creatorcontrib>Thi Mai, Thu-Thuy</creatorcontrib><creatorcontrib>Raffaele, Alessandra</creatorcontrib><creatorcontrib>Urlacher, Vlada B.</creatorcontrib><creatorcontrib>Nguyen, Thi Thao</creatorcontrib><creatorcontrib>Hutter, Michael C.</creatorcontrib><creatorcontrib>Thi Vu, Hanh-Nguyen</creatorcontrib><creatorcontrib>Thuy Le, Duong Thi</creatorcontrib><creatorcontrib>Quach, Tung Ngoc</creatorcontrib><creatorcontrib>Phi, Quyet-Tien</creatorcontrib><title>New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 monooxygenases (P450 or CYP) are attractive candidates due to their ability to perform regio- and stereoselective hydroxylation at allylic C–H bonds. In this study, CYP154C4 from Streptomyces cavourensis YBQ59 was cloned and expressed in Escherichia coli. By screening 64 candidate substrates, this P450 was found to catalyze the regio- and stereoselective hydroxylation of nootkatone, yielding a single product, 3β-hydroxynootkatone. Using a whole-cell E. coli system expressing CYP154C4, supported by the heterologous redox partners YkuN from Bacillus subtilis and FdR from E. coli, 3β-hydroxynootkatone was produced on a preparative scale. The structure of this compound was determined by 1H NMR, 13C NMR, NOESY, HMBC, and HSQC. The kinetics of product formation were analyzed using HPLC, and the Km and Kcat values were calculated. Furthermore, structural insights into the selective hydroxylation of nootkatone were elucidated by molecular docking. 3β-Hydroxynootkatone, recently synthesized semi-synthetically from nootkatone, has been reported to exhibit a higher insecticidal activity than its parent compound. Additionally, the functionalization of nootkatone with N-acyl-2-aminothiazole at the C3 and C2 positions, yielding an α-glucosidase inhibitor, has also been previously described. Therefore, 3β-hydroxynootkatone has great potential for further research and for synthesizing new derivatives with valuable biological activities for agricultural and medicinal applications.
[Display omitted]
•New CYP154C4 from Streptomyces cavourensis YBQ59 was characterized.•CYP154C4 hydroxylates nootkatone to the single product 3β-hydroxynootkatone.•3β-Hydroxynootkatone has never been reported in any biocatalytic system so far.•3β-Hydroxynootkatone has great potential for further research.</description><subject>3β-hydroxynootkatone</subject><subject>Bacillus subtilis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>biophysics</subject><subject>cosmetics</subject><subject>CYP154C4</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Homology modeling</subject><subject>Hydroxylation</subject><subject>insecticidal properties</subject><subject>Kinetics</subject><subject>Nootkatone</subject><subject>Polycyclic Sesquiterpenes - chemistry</subject><subject>Polycyclic Sesquiterpenes - metabolism</subject><subject>Selective hydroxylation</subject><subject>Sesquiterpenes - chemistry</subject><subject>Sesquiterpenes - metabolism</subject><subject>Stereoisomerism</subject><subject>stereoselectivity</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces cavourensis</subject><subject>Substrate Specificity</subject><issn>0003-9861</issn><issn>1096-0384</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2O1DAQhS0EYnoaDsAGeckmjcs_SSxW0AIGacSPgMWsLCcug5sk7rGThr4WB-FMeNQDS8SqSqVXr_TqI-QRsA0wqJ_uNrbrNpxxuYEy0PwOWQHTdcVEK--SFWNMVLqt4Yyc57xjDEDW_D45E1q20Ei5Istb_E63V-9Bya2kPsWRfpwT7uc4HnvMtLeHuCSccsj06sUHpekek49pzDThlxAraidH84wJS59xwH4OB6Ti18_q69Gl-GOwc4gTjZ5OMc7f7BwnfEDueTtkfHhb1-Tzq5efthfV5bvXb7bPL6seWiErpZhnvWvBaeig65T3TnRK8VoKLoXrmlo7ZrlsOGuV0l4xcCW_1oBCWibW5MnJd5_i9YJ5NmPIPQ6DnTAu2YgSG1reNuI_pFywhstyd03gJO1TzDmhN_sURpuOBpi5AWN2poAxN2DMCUzZeXxrv3Qjur8bf0gUwbOTAMs_DgGTyX3AqUcXUvmpcTH8w_43AT6chA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Ly, Thuy T.B.</creator><creator>Thi Mai, Thu-Thuy</creator><creator>Raffaele, Alessandra</creator><creator>Urlacher, Vlada B.</creator><creator>Nguyen, Thi Thao</creator><creator>Hutter, Michael C.</creator><creator>Thi Vu, Hanh-Nguyen</creator><creator>Thuy Le, Duong Thi</creator><creator>Quach, Tung Ngoc</creator><creator>Phi, Quyet-Tien</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5984-7503</orcidid></search><sort><creationdate>202412</creationdate><title>New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone</title><author>Ly, Thuy T.B. ; Thi Mai, Thu-Thuy ; Raffaele, Alessandra ; Urlacher, Vlada B. ; Nguyen, Thi Thao ; Hutter, Michael C. ; Thi Vu, Hanh-Nguyen ; Thuy Le, Duong Thi ; Quach, Tung Ngoc ; Phi, Quyet-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1834-550f0cd81d91b1bb5ffd3b552643243db769d0a247208559f501d096991e34a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3β-hydroxynootkatone</topic><topic>Bacillus subtilis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>biophysics</topic><topic>cosmetics</topic><topic>CYP154C4</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Homology modeling</topic><topic>Hydroxylation</topic><topic>insecticidal properties</topic><topic>Kinetics</topic><topic>Nootkatone</topic><topic>Polycyclic Sesquiterpenes - chemistry</topic><topic>Polycyclic Sesquiterpenes - metabolism</topic><topic>Selective hydroxylation</topic><topic>Sesquiterpenes - chemistry</topic><topic>Sesquiterpenes - metabolism</topic><topic>Stereoisomerism</topic><topic>stereoselectivity</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces cavourensis</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Thuy T.B.</creatorcontrib><creatorcontrib>Thi Mai, Thu-Thuy</creatorcontrib><creatorcontrib>Raffaele, Alessandra</creatorcontrib><creatorcontrib>Urlacher, Vlada B.</creatorcontrib><creatorcontrib>Nguyen, Thi Thao</creatorcontrib><creatorcontrib>Hutter, Michael C.</creatorcontrib><creatorcontrib>Thi Vu, Hanh-Nguyen</creatorcontrib><creatorcontrib>Thuy Le, Duong Thi</creatorcontrib><creatorcontrib>Quach, Tung Ngoc</creatorcontrib><creatorcontrib>Phi, Quyet-Tien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Thuy T.B.</au><au>Thi Mai, Thu-Thuy</au><au>Raffaele, Alessandra</au><au>Urlacher, Vlada B.</au><au>Nguyen, Thi Thao</au><au>Hutter, Michael C.</au><au>Thi Vu, Hanh-Nguyen</au><au>Thuy Le, Duong Thi</au><au>Quach, Tung Ngoc</au><au>Phi, Quyet-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2024-12</date><risdate>2024</risdate><volume>762</volume><spage>110192</spage><pages>110192-</pages><artnum>110192</artnum><issn>0003-9861</issn><issn>1096-0384</issn><eissn>1096-0384</eissn><abstract>Nootkatone, a sesquiterpenoid widely used in the food and cosmetics industries, exhibits diverse biological activities and pharmaceutical prospects. Modification of nootkatone to create new derivatives with desirable activities has attracted significant attention. For this purpose, cytochrome P450 monooxygenases (P450 or CYP) are attractive candidates due to their ability to perform regio- and stereoselective hydroxylation at allylic C–H bonds. In this study, CYP154C4 from Streptomyces cavourensis YBQ59 was cloned and expressed in Escherichia coli. By screening 64 candidate substrates, this P450 was found to catalyze the regio- and stereoselective hydroxylation of nootkatone, yielding a single product, 3β-hydroxynootkatone. Using a whole-cell E. coli system expressing CYP154C4, supported by the heterologous redox partners YkuN from Bacillus subtilis and FdR from E. coli, 3β-hydroxynootkatone was produced on a preparative scale. The structure of this compound was determined by 1H NMR, 13C NMR, NOESY, HMBC, and HSQC. The kinetics of product formation were analyzed using HPLC, and the Km and Kcat values were calculated. Furthermore, structural insights into the selective hydroxylation of nootkatone were elucidated by molecular docking. 3β-Hydroxynootkatone, recently synthesized semi-synthetically from nootkatone, has been reported to exhibit a higher insecticidal activity than its parent compound. Additionally, the functionalization of nootkatone with N-acyl-2-aminothiazole at the C3 and C2 positions, yielding an α-glucosidase inhibitor, has also been previously described. Therefore, 3β-hydroxynootkatone has great potential for further research and for synthesizing new derivatives with valuable biological activities for agricultural and medicinal applications.
[Display omitted]
•New CYP154C4 from Streptomyces cavourensis YBQ59 was characterized.•CYP154C4 hydroxylates nootkatone to the single product 3β-hydroxynootkatone.•3β-Hydroxynootkatone has never been reported in any biocatalytic system so far.•3β-Hydroxynootkatone has great potential for further research.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39481744</pmid><doi>10.1016/j.abb.2024.110192</doi><orcidid>https://orcid.org/0000-0001-5984-7503</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9861 |
ispartof | Archives of biochemistry and biophysics, 2024-12, Vol.762, p.110192, Article 110192 |
issn | 0003-9861 1096-0384 1096-0384 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154182873 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 3β-hydroxynootkatone Bacillus subtilis Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism biophysics cosmetics CYP154C4 cytochrome P-450 Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Homology modeling Hydroxylation insecticidal properties Kinetics Nootkatone Polycyclic Sesquiterpenes - chemistry Polycyclic Sesquiterpenes - metabolism Selective hydroxylation Sesquiterpenes - chemistry Sesquiterpenes - metabolism Stereoisomerism stereoselectivity Streptomyces - enzymology Streptomyces cavourensis Substrate Specificity |
title | New CYP154C4 from Streptomyces cavourensis YBQ59 performs regio- and stereo- selective 3β-hydroxlation of nootkatone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20CYP154C4%20from%20Streptomyces%20cavourensis%20YBQ59%20performs%20regio-%20and%20stereo-%20selective%203%CE%B2-hydroxlation%20of%20nootkatone&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Ly,%20Thuy%20T.B.&rft.date=2024-12&rft.volume=762&rft.spage=110192&rft.pages=110192-&rft.artnum=110192&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2024.110192&rft_dat=%3Cproquest_cross%3E3154182873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123072424&rft_id=info:pmid/39481744&rft_els_id=S000398612400314X&rfr_iscdi=true |