Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index

•The model is optimized for global GPP and ET estimation with enhanced accuracy.•NIRv improves GPP precision by coupling with ET through fAPAR.•ET simulations outperform foundational and remote sensing models.•The model shows higher correlation and lower RMSE for GPP estimation using NIRv. In arid a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2024-11, Vol.643, p.132012, Article 132012
Hauptverfasser: Su, Yanxin, Gan, Guojing, Bu, Jingyi, Yuan, Mengjia, Ma, Hongyu, Liu, Xianghe, Zhang, Yongqiang, Gao, Yanchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 132012
container_title Journal of hydrology (Amsterdam)
container_volume 643
creator Su, Yanxin
Gan, Guojing
Bu, Jingyi
Yuan, Mengjia
Ma, Hongyu
Liu, Xianghe
Zhang, Yongqiang
Gao, Yanchun
description •The model is optimized for global GPP and ET estimation with enhanced accuracy.•NIRv improves GPP precision by coupling with ET through fAPAR.•ET simulations outperform foundational and remote sensing models.•The model shows higher correlation and lower RMSE for GPP estimation using NIRv. In arid and semi-arid regions, accurate estimates of global primary productivity (GPP) and evapotranspiration (ET) are critical for understanding and managing water and carbon cycling in these fragile ecosystems. In this study, an improved ET-photosynthesis model (PT-JPL-GPP) was used to optimize GPP and ET estimates in these ecosystems by introducing the near infrared reflectance index (NIRv). NIRv, an indicator of the light use efficiency of vegetation, was integrated into the PT-JPL model. Compared to the original PT-JPL and existing remote sensing models, this PT-JPL-GPP model displayed a higher correlation (R2 = 0.73) and lower BIAS (−19.57 %) for GPP estimation. ET estimates were also noticeably improved, the R2 increased by 0.03(SN-Dhr) to 0.16(US-SRC), and the Root Mean Square Error (RMSE) reduced by 0.57 mm/month (SN-Dhr) to 4.64 mm/month (US-SRC). Particularly at the GRA site, the R2 was increased from 0.63 to 0.74, and the RMSE and bias was decreased by 1.25 mm/month and 10.51 %, respectively. The PT-JPL-GPP model was comparable with GLEAM, VPM, MOD17, MOD16, and PML-V2 models. The PT-JPL-GPP model exhibits a lower root mean square error and higher correlation for estimating GPP, compared to the VPM, MOD17, and PML-V2 models. The PT-JPL-GPP model outperformed PT-JPL, MOD16 models for estimating ET, but was slightly poorer than GLEAM and PML-V2 models. Our results highlight the merits of NIRv for improving GPP and ET estimates.
doi_str_mv 10.1016/j.jhydrol.2024.132012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154181518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169424014082</els_id><sourcerecordid>3154181518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-1757688763892816e7af35d3baefe858c5914ca5cafd39d99e129458e1c15b513</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhfegYK3-BCFHL1szyWabPYkUrYWiIHoOaTLbpmw3Ndkt9t-bur07l2GY9x68L8vugE6AQvmwnWw3Rxt8M2GUFRPgjAK7yEaUMpZDWRVX2XWMW5qG82KUdfPgYyT74HY6HNP2tjed821ufL9v0BI86L3vgm7j3gV9ehHXkm6DZN34lW6IDs4S3VoScefyvyvgOukiWemYEvwgf1t8HJLV4s9NdlnrJuLteY-zr5fnz9lrvnyfL2ZPy9wwRrscpmJaSjktuayYhBKnuubC8pXGGqWQRlRQGC2Mri2vbFUhsKoQEsGAWAng4-x-yE21vnuMndq5aLBpdIu-j4qDKECCAJmkYpCaE4-AtTojUUDViazaqjNZdSKrBrLJ9zj4MPU4OAwqGoetQesCmk5Z7_5J-AVfT4fv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154181518</pqid></control><display><type>article</type><title>Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index</title><source>Elsevier ScienceDirect Journals</source><creator>Su, Yanxin ; Gan, Guojing ; Bu, Jingyi ; Yuan, Mengjia ; Ma, Hongyu ; Liu, Xianghe ; Zhang, Yongqiang ; Gao, Yanchun</creator><creatorcontrib>Su, Yanxin ; Gan, Guojing ; Bu, Jingyi ; Yuan, Mengjia ; Ma, Hongyu ; Liu, Xianghe ; Zhang, Yongqiang ; Gao, Yanchun</creatorcontrib><description>•The model is optimized for global GPP and ET estimation with enhanced accuracy.•NIRv improves GPP precision by coupling with ET through fAPAR.•ET simulations outperform foundational and remote sensing models.•The model shows higher correlation and lower RMSE for GPP estimation using NIRv. In arid and semi-arid regions, accurate estimates of global primary productivity (GPP) and evapotranspiration (ET) are critical for understanding and managing water and carbon cycling in these fragile ecosystems. In this study, an improved ET-photosynthesis model (PT-JPL-GPP) was used to optimize GPP and ET estimates in these ecosystems by introducing the near infrared reflectance index (NIRv). NIRv, an indicator of the light use efficiency of vegetation, was integrated into the PT-JPL model. Compared to the original PT-JPL and existing remote sensing models, this PT-JPL-GPP model displayed a higher correlation (R2 = 0.73) and lower BIAS (−19.57 %) for GPP estimation. ET estimates were also noticeably improved, the R2 increased by 0.03(SN-Dhr) to 0.16(US-SRC), and the Root Mean Square Error (RMSE) reduced by 0.57 mm/month (SN-Dhr) to 4.64 mm/month (US-SRC). Particularly at the GRA site, the R2 was increased from 0.63 to 0.74, and the RMSE and bias was decreased by 1.25 mm/month and 10.51 %, respectively. The PT-JPL-GPP model was comparable with GLEAM, VPM, MOD17, MOD16, and PML-V2 models. The PT-JPL-GPP model exhibits a lower root mean square error and higher correlation for estimating GPP, compared to the VPM, MOD17, and PML-V2 models. The PT-JPL-GPP model outperformed PT-JPL, MOD16 models for estimating ET, but was slightly poorer than GLEAM and PML-V2 models. Our results highlight the merits of NIRv for improving GPP and ET estimates.</description><identifier>ISSN: 0022-1694</identifier><identifier>DOI: 10.1016/j.jhydrol.2024.132012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arid and semi-arid regions ; carbon ; Evapotranspiration ; Gross primary production ; NIRv ; primary productivity ; radiation use efficiency ; reflectance ; vegetation</subject><ispartof>Journal of hydrology (Amsterdam), 2024-11, Vol.643, p.132012, Article 132012</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-1757688763892816e7af35d3baefe858c5914ca5cafd39d99e129458e1c15b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169424014082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Su, Yanxin</creatorcontrib><creatorcontrib>Gan, Guojing</creatorcontrib><creatorcontrib>Bu, Jingyi</creatorcontrib><creatorcontrib>Yuan, Mengjia</creatorcontrib><creatorcontrib>Ma, Hongyu</creatorcontrib><creatorcontrib>Liu, Xianghe</creatorcontrib><creatorcontrib>Zhang, Yongqiang</creatorcontrib><creatorcontrib>Gao, Yanchun</creatorcontrib><title>Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index</title><title>Journal of hydrology (Amsterdam)</title><description>•The model is optimized for global GPP and ET estimation with enhanced accuracy.•NIRv improves GPP precision by coupling with ET through fAPAR.•ET simulations outperform foundational and remote sensing models.•The model shows higher correlation and lower RMSE for GPP estimation using NIRv. In arid and semi-arid regions, accurate estimates of global primary productivity (GPP) and evapotranspiration (ET) are critical for understanding and managing water and carbon cycling in these fragile ecosystems. In this study, an improved ET-photosynthesis model (PT-JPL-GPP) was used to optimize GPP and ET estimates in these ecosystems by introducing the near infrared reflectance index (NIRv). NIRv, an indicator of the light use efficiency of vegetation, was integrated into the PT-JPL model. Compared to the original PT-JPL and existing remote sensing models, this PT-JPL-GPP model displayed a higher correlation (R2 = 0.73) and lower BIAS (−19.57 %) for GPP estimation. ET estimates were also noticeably improved, the R2 increased by 0.03(SN-Dhr) to 0.16(US-SRC), and the Root Mean Square Error (RMSE) reduced by 0.57 mm/month (SN-Dhr) to 4.64 mm/month (US-SRC). Particularly at the GRA site, the R2 was increased from 0.63 to 0.74, and the RMSE and bias was decreased by 1.25 mm/month and 10.51 %, respectively. The PT-JPL-GPP model was comparable with GLEAM, VPM, MOD17, MOD16, and PML-V2 models. The PT-JPL-GPP model exhibits a lower root mean square error and higher correlation for estimating GPP, compared to the VPM, MOD17, and PML-V2 models. The PT-JPL-GPP model outperformed PT-JPL, MOD16 models for estimating ET, but was slightly poorer than GLEAM and PML-V2 models. Our results highlight the merits of NIRv for improving GPP and ET estimates.</description><subject>Arid and semi-arid regions</subject><subject>carbon</subject><subject>Evapotranspiration</subject><subject>Gross primary production</subject><subject>NIRv</subject><subject>primary productivity</subject><subject>radiation use efficiency</subject><subject>reflectance</subject><subject>vegetation</subject><issn>0022-1694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhfegYK3-BCFHL1szyWabPYkUrYWiIHoOaTLbpmw3Ndkt9t-bur07l2GY9x68L8vugE6AQvmwnWw3Rxt8M2GUFRPgjAK7yEaUMpZDWRVX2XWMW5qG82KUdfPgYyT74HY6HNP2tjed821ufL9v0BI86L3vgm7j3gV9ehHXkm6DZN34lW6IDs4S3VoScefyvyvgOukiWemYEvwgf1t8HJLV4s9NdlnrJuLteY-zr5fnz9lrvnyfL2ZPy9wwRrscpmJaSjktuayYhBKnuubC8pXGGqWQRlRQGC2Mri2vbFUhsKoQEsGAWAng4-x-yE21vnuMndq5aLBpdIu-j4qDKECCAJmkYpCaE4-AtTojUUDViazaqjNZdSKrBrLJ9zj4MPU4OAwqGoetQesCmk5Z7_5J-AVfT4fv</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Su, Yanxin</creator><creator>Gan, Guojing</creator><creator>Bu, Jingyi</creator><creator>Yuan, Mengjia</creator><creator>Ma, Hongyu</creator><creator>Liu, Xianghe</creator><creator>Zhang, Yongqiang</creator><creator>Gao, Yanchun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202411</creationdate><title>Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index</title><author>Su, Yanxin ; Gan, Guojing ; Bu, Jingyi ; Yuan, Mengjia ; Ma, Hongyu ; Liu, Xianghe ; Zhang, Yongqiang ; Gao, Yanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-1757688763892816e7af35d3baefe858c5914ca5cafd39d99e129458e1c15b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arid and semi-arid regions</topic><topic>carbon</topic><topic>Evapotranspiration</topic><topic>Gross primary production</topic><topic>NIRv</topic><topic>primary productivity</topic><topic>radiation use efficiency</topic><topic>reflectance</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yanxin</creatorcontrib><creatorcontrib>Gan, Guojing</creatorcontrib><creatorcontrib>Bu, Jingyi</creatorcontrib><creatorcontrib>Yuan, Mengjia</creatorcontrib><creatorcontrib>Ma, Hongyu</creatorcontrib><creatorcontrib>Liu, Xianghe</creatorcontrib><creatorcontrib>Zhang, Yongqiang</creatorcontrib><creatorcontrib>Gao, Yanchun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Yanxin</au><au>Gan, Guojing</au><au>Bu, Jingyi</au><au>Yuan, Mengjia</au><au>Ma, Hongyu</au><au>Liu, Xianghe</au><au>Zhang, Yongqiang</au><au>Gao, Yanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>643</volume><spage>132012</spage><pages>132012-</pages><artnum>132012</artnum><issn>0022-1694</issn><abstract>•The model is optimized for global GPP and ET estimation with enhanced accuracy.•NIRv improves GPP precision by coupling with ET through fAPAR.•ET simulations outperform foundational and remote sensing models.•The model shows higher correlation and lower RMSE for GPP estimation using NIRv. In arid and semi-arid regions, accurate estimates of global primary productivity (GPP) and evapotranspiration (ET) are critical for understanding and managing water and carbon cycling in these fragile ecosystems. In this study, an improved ET-photosynthesis model (PT-JPL-GPP) was used to optimize GPP and ET estimates in these ecosystems by introducing the near infrared reflectance index (NIRv). NIRv, an indicator of the light use efficiency of vegetation, was integrated into the PT-JPL model. Compared to the original PT-JPL and existing remote sensing models, this PT-JPL-GPP model displayed a higher correlation (R2 = 0.73) and lower BIAS (−19.57 %) for GPP estimation. ET estimates were also noticeably improved, the R2 increased by 0.03(SN-Dhr) to 0.16(US-SRC), and the Root Mean Square Error (RMSE) reduced by 0.57 mm/month (SN-Dhr) to 4.64 mm/month (US-SRC). Particularly at the GRA site, the R2 was increased from 0.63 to 0.74, and the RMSE and bias was decreased by 1.25 mm/month and 10.51 %, respectively. The PT-JPL-GPP model was comparable with GLEAM, VPM, MOD17, MOD16, and PML-V2 models. The PT-JPL-GPP model exhibits a lower root mean square error and higher correlation for estimating GPP, compared to the VPM, MOD17, and PML-V2 models. The PT-JPL-GPP model outperformed PT-JPL, MOD16 models for estimating ET, but was slightly poorer than GLEAM and PML-V2 models. Our results highlight the merits of NIRv for improving GPP and ET estimates.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2024.132012</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2024-11, Vol.643, p.132012, Article 132012
issn 0022-1694
language eng
recordid cdi_proquest_miscellaneous_3154181518
source Elsevier ScienceDirect Journals
subjects Arid and semi-arid regions
carbon
Evapotranspiration
Gross primary production
NIRv
primary productivity
radiation use efficiency
reflectance
vegetation
title Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gross%20primary%20production-coupled%20evapotranspiration%20in%20the%20global%20arid%20and%20semi-arid%20regions%20based%20on%20the%20NIRv%20index&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Su,%20Yanxin&rft.date=2024-11&rft.volume=643&rft.spage=132012&rft.pages=132012-&rft.artnum=132012&rft.issn=0022-1694&rft_id=info:doi/10.1016/j.jhydrol.2024.132012&rft_dat=%3Cproquest_cross%3E3154181518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154181518&rft_id=info:pmid/&rft_els_id=S0022169424014082&rfr_iscdi=true