Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia

To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish physiology and biochemistry 2024-12, Vol.50 (6), p.2475-2488
Hauptverfasser: Xu, Wenya, Feng, Yahui, Chen, Songlin, Wang, Huihu, Wen, Jian, Zheng, Guodong, Wang, Ganxiang, Zou, Shuming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2488
container_issue 6
container_start_page 2475
container_title Fish physiology and biochemistry
container_volume 50
creator Xu, Wenya
Feng, Yahui
Chen, Songlin
Wang, Huihu
Wen, Jian
Zheng, Guodong
Wang, Ganxiang
Zou, Shuming
description To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions—normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)—to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.
doi_str_mv 10.1007/s10695-024-01393-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154173823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154173823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-d73f7fecc2d1cdb7c4dd5e3caa388ce54730612523f70c165869d2bb61c079c33</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhBVggS2zKIuBL4ssSVeUiFbGBdeTYJzOuHDvYidR5JZ4ST9OCxALhhX1sf_9_dPQj9JKSt5QQ-a5QInTXENY2hHLNG_UI7WgnedNRoR6jHdGMNFS27Aw9K-WGEKKloE_RGdfstOQO_bwqixmCL4cJ4oJNdNi7WvnRW7P4FHEa8XIAvPchYAt1Cz4CHnOa7t6HsFZdiWld8JDBTPjiC-xNSEM2k8FmGsLRwnwwwbzZ7JeCzTyHB38fcVlWd_RxvzXJMCUH4XRfo4OMD8c53XrzHD0ZTSjw4v48R98_XH27_NRcf_34-fL9dWOZ0kvjJB_lCNYyR60bpG2d64BbY7hSFrpWciIo61jFiKWiU0I7NgyCWiK15fwcXWy-c04_VihLP_lymtxESGvpOe1aKrli_4ESrZXgXIiKvv4LvUlrjnWQasi0kkwSVSm2UTanUjKM_Zz9ZPKxp6Q_hd5vofc19P4u9P4kenVvvQ4TuN-Sh5QrwDeg1K-4h_yn9z9sfwHM57ot</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129872708</pqid></control><display><type>article</type><title>Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xu, Wenya ; Feng, Yahui ; Chen, Songlin ; Wang, Huihu ; Wen, Jian ; Zheng, Guodong ; Wang, Ganxiang ; Zou, Shuming</creator><creatorcontrib>Xu, Wenya ; Feng, Yahui ; Chen, Songlin ; Wang, Huihu ; Wen, Jian ; Zheng, Guodong ; Wang, Ganxiang ; Zou, Shuming</creatorcontrib><description>To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions—normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)—to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.</description><identifier>ISSN: 0920-1742</identifier><identifier>ISSN: 1573-5168</identifier><identifier>EISSN: 1573-5168</identifier><identifier>DOI: 10.1007/s10695-024-01393-8</identifier><identifier>PMID: 39222227</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Animal Physiology ; Animals ; Anions ; Antibiotics ; antioxidant enzymes ; Apoptosis ; Apoptosis - drug effects ; Biomedical and Life Sciences ; Bream ; Catalase ; Catalase - metabolism ; Cell culture ; Cell Hypoxia ; Cell Line ; Cell lines ; Cell morphology ; Cells ; Cyprinidae - physiology ; Enzymatic activity ; Enzyme activity ; Enzymes ; fetal bovine serum ; fish ; Freshwater &amp; Marine Ecology ; Gills - cytology ; Gills - drug effects ; Gills - pathology ; Glutathione ; Histology ; Homeostasis ; Hypoxia ; L-Lactate dehydrogenase ; Lactate ; Lactate dehydrogenase ; Life Sciences ; Megalobrama amblycephala ; mitochondria ; Morphology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; shrinkage ; Superoxide anions ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Tissue culture ; Zoology</subject><ispartof>Fish physiology and biochemistry, 2024-12, Vol.50 (6), p.2475-2488</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-d73f7fecc2d1cdb7c4dd5e3caa388ce54730612523f70c165869d2bb61c079c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10695-024-01393-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10695-024-01393-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39222227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenya</creatorcontrib><creatorcontrib>Feng, Yahui</creatorcontrib><creatorcontrib>Chen, Songlin</creatorcontrib><creatorcontrib>Wang, Huihu</creatorcontrib><creatorcontrib>Wen, Jian</creatorcontrib><creatorcontrib>Zheng, Guodong</creatorcontrib><creatorcontrib>Wang, Ganxiang</creatorcontrib><creatorcontrib>Zou, Shuming</creatorcontrib><title>Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia</title><title>Fish physiology and biochemistry</title><addtitle>Fish Physiol Biochem</addtitle><addtitle>Fish Physiol Biochem</addtitle><description>To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions—normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)—to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Anions</subject><subject>Antibiotics</subject><subject>antioxidant enzymes</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Bream</subject><subject>Catalase</subject><subject>Catalase - metabolism</subject><subject>Cell culture</subject><subject>Cell Hypoxia</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell morphology</subject><subject>Cells</subject><subject>Cyprinidae - physiology</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>fetal bovine serum</subject><subject>fish</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gills - cytology</subject><subject>Gills - drug effects</subject><subject>Gills - pathology</subject><subject>Glutathione</subject><subject>Histology</subject><subject>Homeostasis</subject><subject>Hypoxia</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate</subject><subject>Lactate dehydrogenase</subject><subject>Life Sciences</subject><subject>Megalobrama amblycephala</subject><subject>mitochondria</subject><subject>Morphology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>shrinkage</subject><subject>Superoxide anions</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Tissue culture</subject><subject>Zoology</subject><issn>0920-1742</issn><issn>1573-5168</issn><issn>1573-5168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhBVggS2zKIuBL4ssSVeUiFbGBdeTYJzOuHDvYidR5JZ4ST9OCxALhhX1sf_9_dPQj9JKSt5QQ-a5QInTXENY2hHLNG_UI7WgnedNRoR6jHdGMNFS27Aw9K-WGEKKloE_RGdfstOQO_bwqixmCL4cJ4oJNdNi7WvnRW7P4FHEa8XIAvPchYAt1Cz4CHnOa7t6HsFZdiWld8JDBTPjiC-xNSEM2k8FmGsLRwnwwwbzZ7JeCzTyHB38fcVlWd_RxvzXJMCUH4XRfo4OMD8c53XrzHD0ZTSjw4v48R98_XH27_NRcf_34-fL9dWOZ0kvjJB_lCNYyR60bpG2d64BbY7hSFrpWciIo61jFiKWiU0I7NgyCWiK15fwcXWy-c04_VihLP_lymtxESGvpOe1aKrli_4ESrZXgXIiKvv4LvUlrjnWQasi0kkwSVSm2UTanUjKM_Zz9ZPKxp6Q_hd5vofc19P4u9P4kenVvvQ4TuN-Sh5QrwDeg1K-4h_yn9z9sfwHM57ot</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Xu, Wenya</creator><creator>Feng, Yahui</creator><creator>Chen, Songlin</creator><creator>Wang, Huihu</creator><creator>Wen, Jian</creator><creator>Zheng, Guodong</creator><creator>Wang, Ganxiang</creator><creator>Zou, Shuming</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241201</creationdate><title>Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia</title><author>Xu, Wenya ; Feng, Yahui ; Chen, Songlin ; Wang, Huihu ; Wen, Jian ; Zheng, Guodong ; Wang, Ganxiang ; Zou, Shuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-d73f7fecc2d1cdb7c4dd5e3caa388ce54730612523f70c165869d2bb61c079c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Anions</topic><topic>Antibiotics</topic><topic>antioxidant enzymes</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Bream</topic><topic>Catalase</topic><topic>Catalase - metabolism</topic><topic>Cell culture</topic><topic>Cell Hypoxia</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell morphology</topic><topic>Cells</topic><topic>Cyprinidae - physiology</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>fetal bovine serum</topic><topic>fish</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gills - cytology</topic><topic>Gills - drug effects</topic><topic>Gills - pathology</topic><topic>Glutathione</topic><topic>Histology</topic><topic>Homeostasis</topic><topic>Hypoxia</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate</topic><topic>Lactate dehydrogenase</topic><topic>Life Sciences</topic><topic>Megalobrama amblycephala</topic><topic>mitochondria</topic><topic>Morphology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>shrinkage</topic><topic>Superoxide anions</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Tissue culture</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenya</creatorcontrib><creatorcontrib>Feng, Yahui</creatorcontrib><creatorcontrib>Chen, Songlin</creatorcontrib><creatorcontrib>Wang, Huihu</creatorcontrib><creatorcontrib>Wen, Jian</creatorcontrib><creatorcontrib>Zheng, Guodong</creatorcontrib><creatorcontrib>Wang, Ganxiang</creatorcontrib><creatorcontrib>Zou, Shuming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Fish physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenya</au><au>Feng, Yahui</au><au>Chen, Songlin</au><au>Wang, Huihu</au><au>Wen, Jian</au><au>Zheng, Guodong</au><au>Wang, Ganxiang</au><au>Zou, Shuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia</atitle><jtitle>Fish physiology and biochemistry</jtitle><stitle>Fish Physiol Biochem</stitle><addtitle>Fish Physiol Biochem</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>50</volume><issue>6</issue><spage>2475</spage><epage>2488</epage><pages>2475-2488</pages><issn>0920-1742</issn><issn>1573-5168</issn><eissn>1573-5168</eissn><abstract>To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions—normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)—to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39222227</pmid><doi>10.1007/s10695-024-01393-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-1742
ispartof Fish physiology and biochemistry, 2024-12, Vol.50 (6), p.2475-2488
issn 0920-1742
1573-5168
1573-5168
language eng
recordid cdi_proquest_miscellaneous_3154173823
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animal Anatomy
Animal Biochemistry
Animal Physiology
Animals
Anions
Antibiotics
antioxidant enzymes
Apoptosis
Apoptosis - drug effects
Biomedical and Life Sciences
Bream
Catalase
Catalase - metabolism
Cell culture
Cell Hypoxia
Cell Line
Cell lines
Cell morphology
Cells
Cyprinidae - physiology
Enzymatic activity
Enzyme activity
Enzymes
fetal bovine serum
fish
Freshwater & Marine Ecology
Gills - cytology
Gills - drug effects
Gills - pathology
Glutathione
Histology
Homeostasis
Hypoxia
L-Lactate dehydrogenase
Lactate
Lactate dehydrogenase
Life Sciences
Megalobrama amblycephala
mitochondria
Morphology
Reactive oxygen species
Reactive Oxygen Species - metabolism
shrinkage
Superoxide anions
Superoxide dismutase
Superoxide Dismutase - metabolism
Tissue culture
Zoology
title Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20and%20identification%20of%20the%20gill%20cell%20line%20from%20the%20blunt%20snout%20bream%20(Megalobrama%20amblycephala)%20and%20its%20application%20in%20studying%20gill%20remodeling%20under%20hypoxia&rft.jtitle=Fish%20physiology%20and%20biochemistry&rft.au=Xu,%20Wenya&rft.date=2024-12-01&rft.volume=50&rft.issue=6&rft.spage=2475&rft.epage=2488&rft.pages=2475-2488&rft.issn=0920-1742&rft.eissn=1573-5168&rft_id=info:doi/10.1007/s10695-024-01393-8&rft_dat=%3Cproquest_cross%3E3154173823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129872708&rft_id=info:pmid/39222227&rfr_iscdi=true