Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation
Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136327-136327, Article 136327 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136327 |
---|---|
container_issue | |
container_start_page | 136327 |
container_title | Journal of hazardous materials |
container_volume | 480 |
creator | Zhu, Shiye Chen, Anwei Zhang, Jiale Luo, Si Yang, Jizhao Chai, Youzheng Zeng, Jianhua Bai, Ma Yang, Zhenghang Lu, Gen |
description | Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
[Display omitted]
•P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes. |
doi_str_mv | 10.1016/j.jhazmat.2024.136327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154170883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389424029066</els_id><sourcerecordid>3154170883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EYsrAI4C8ZDEpdpzYLhuEhqs0EkjA2jpxThpXcVxsB-i8GK-HSwtbWP2S_V-k8xHymLM1Z1w-2613I9x6yOua1c2aCylqdYesuFaiEkLIu2TFBGsqoTfNBXmQ0o4xxlXb3CcXYtNoXstmRX6-Quv2I0Y3b2kekXYu9LiN0EN2YaZhKK8OPOYx_ABPuwP9OMKMMdgRMCO1YzykkPYhusXT7y6PdIa8RJhocn3pzficfjqUxNal7Cz1WJKzSz5d0RxhTja6fQ7e2VTKIILNJXX7e_6KwtxTHya0ywSxNPqix5-H5N4AU8JHZ70kX968_nz9rrr58Pb99cubytZK5kpzhQiDFcKibmuuhWpUUckHtenbRom6U_UwDD2XCkC0oLFVQ9fyngkppbgkT0-9-xi-Lpiy8S5ZnKZyg7AkI3jbcMW0Fv9hrQVTgulNsbYnq40hpYiD2UfnIR4MZ-aI1-zMGa854jUnvCX35DyxdB77v6k_PIvhxcmA5SbfHEaTrMPZYu8i2mz64P4x8Quh9L6x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123073089</pqid></control><display><type>article</type><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</creator><creatorcontrib>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</creatorcontrib><description>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
[Display omitted]
•P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2024.136327</identifier><identifier>PMID: 39481264</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>biodegradation ; Biodegradation, Environmental ; Bioleaching ; biomineralization ; biosphere ; biotransformation ; coculture ; coevolution ; cytochrome P-450 ; dose response ; energy metabolism ; Fungal adaptability ; Fungal-mineral interaction ; Insecticides - chemistry ; Insecticides - metabolism ; MD simulation ; molecular dynamics ; Molecular Dynamics Simulation ; Neonicotinoid pesticide ; Neonicotinoids - chemistry ; Neonicotinoids - metabolism ; oxidative stress ; Phanerochaete - genetics ; Phanerochaete - metabolism ; Phanerochaete chrysosporium ; siderite ; soil ; stress response ; thiamethoxam ; Thiamethoxam - metabolism ; Transcriptome ; transcriptomics ; white-rot fungi</subject><ispartof>Journal of hazardous materials, 2024-12, Vol.480, p.136327-136327, Article 136327</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389424029066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39481264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Shiye</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Luo, Si</creatorcontrib><creatorcontrib>Yang, Jizhao</creatorcontrib><creatorcontrib>Chai, Youzheng</creatorcontrib><creatorcontrib>Zeng, Jianhua</creatorcontrib><creatorcontrib>Bai, Ma</creatorcontrib><creatorcontrib>Yang, Zhenghang</creatorcontrib><creatorcontrib>Lu, Gen</creatorcontrib><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
[Display omitted]
•P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</description><subject>biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioleaching</subject><subject>biomineralization</subject><subject>biosphere</subject><subject>biotransformation</subject><subject>coculture</subject><subject>coevolution</subject><subject>cytochrome P-450</subject><subject>dose response</subject><subject>energy metabolism</subject><subject>Fungal adaptability</subject><subject>Fungal-mineral interaction</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - metabolism</subject><subject>MD simulation</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Neonicotinoid pesticide</subject><subject>Neonicotinoids - chemistry</subject><subject>Neonicotinoids - metabolism</subject><subject>oxidative stress</subject><subject>Phanerochaete - genetics</subject><subject>Phanerochaete - metabolism</subject><subject>Phanerochaete chrysosporium</subject><subject>siderite</subject><subject>soil</subject><subject>stress response</subject><subject>thiamethoxam</subject><subject>Thiamethoxam - metabolism</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>white-rot fungi</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO0zAUhi0EYsrAI4C8ZDEpdpzYLhuEhqs0EkjA2jpxThpXcVxsB-i8GK-HSwtbWP2S_V-k8xHymLM1Z1w-2613I9x6yOua1c2aCylqdYesuFaiEkLIu2TFBGsqoTfNBXmQ0o4xxlXb3CcXYtNoXstmRX6-Quv2I0Y3b2kekXYu9LiN0EN2YaZhKK8OPOYx_ABPuwP9OMKMMdgRMCO1YzykkPYhusXT7y6PdIa8RJhocn3pzficfjqUxNal7Cz1WJKzSz5d0RxhTja6fQ7e2VTKIILNJXX7e_6KwtxTHya0ywSxNPqix5-H5N4AU8JHZ70kX968_nz9rrr58Pb99cubytZK5kpzhQiDFcKibmuuhWpUUckHtenbRom6U_UwDD2XCkC0oLFVQ9fyngkppbgkT0-9-xi-Lpiy8S5ZnKZyg7AkI3jbcMW0Fv9hrQVTgulNsbYnq40hpYiD2UfnIR4MZ-aI1-zMGa854jUnvCX35DyxdB77v6k_PIvhxcmA5SbfHEaTrMPZYu8i2mz64P4x8Quh9L6x</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Zhu, Shiye</creator><creator>Chen, Anwei</creator><creator>Zhang, Jiale</creator><creator>Luo, Si</creator><creator>Yang, Jizhao</creator><creator>Chai, Youzheng</creator><creator>Zeng, Jianhua</creator><creator>Bai, Ma</creator><creator>Yang, Zhenghang</creator><creator>Lu, Gen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241205</creationdate><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><author>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioleaching</topic><topic>biomineralization</topic><topic>biosphere</topic><topic>biotransformation</topic><topic>coculture</topic><topic>coevolution</topic><topic>cytochrome P-450</topic><topic>dose response</topic><topic>energy metabolism</topic><topic>Fungal adaptability</topic><topic>Fungal-mineral interaction</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - metabolism</topic><topic>MD simulation</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Neonicotinoid pesticide</topic><topic>Neonicotinoids - chemistry</topic><topic>Neonicotinoids - metabolism</topic><topic>oxidative stress</topic><topic>Phanerochaete - genetics</topic><topic>Phanerochaete - metabolism</topic><topic>Phanerochaete chrysosporium</topic><topic>siderite</topic><topic>soil</topic><topic>stress response</topic><topic>thiamethoxam</topic><topic>Thiamethoxam - metabolism</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>white-rot fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shiye</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Luo, Si</creatorcontrib><creatorcontrib>Yang, Jizhao</creatorcontrib><creatorcontrib>Chai, Youzheng</creatorcontrib><creatorcontrib>Zeng, Jianhua</creatorcontrib><creatorcontrib>Bai, Ma</creatorcontrib><creatorcontrib>Yang, Zhenghang</creatorcontrib><creatorcontrib>Lu, Gen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shiye</au><au>Chen, Anwei</au><au>Zhang, Jiale</au><au>Luo, Si</au><au>Yang, Jizhao</au><au>Chai, Youzheng</au><au>Zeng, Jianhua</au><au>Bai, Ma</au><au>Yang, Zhenghang</au><au>Lu, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>480</volume><spage>136327</spage><epage>136327</epage><pages>136327-136327</pages><artnum>136327</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
[Display omitted]
•P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39481264</pmid><doi>10.1016/j.jhazmat.2024.136327</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2024-12, Vol.480, p.136327-136327, Article 136327 |
issn | 0304-3894 1873-3336 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154170883 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | biodegradation Biodegradation, Environmental Bioleaching biomineralization biosphere biotransformation coculture coevolution cytochrome P-450 dose response energy metabolism Fungal adaptability Fungal-mineral interaction Insecticides - chemistry Insecticides - metabolism MD simulation molecular dynamics Molecular Dynamics Simulation Neonicotinoid pesticide Neonicotinoids - chemistry Neonicotinoids - metabolism oxidative stress Phanerochaete - genetics Phanerochaete - metabolism Phanerochaete chrysosporium siderite soil stress response thiamethoxam Thiamethoxam - metabolism Transcriptome transcriptomics white-rot fungi |
title | Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20biodegradation%20of%20thiamethoxam%20by%20Phanerochaete%20chrysosporium%20with%20natural%20siderite:%20Synergistic%20mechanisms,%20transcriptomics%20characterization,%20and%20molecular%20simulation&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Zhu,%20Shiye&rft.date=2024-12-05&rft.volume=480&rft.spage=136327&rft.epage=136327&rft.pages=136327-136327&rft.artnum=136327&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2024.136327&rft_dat=%3Cproquest_cross%3E3154170883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123073089&rft_id=info:pmid/39481264&rft_els_id=S0304389424029066&rfr_iscdi=true |