Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation

Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-12, Vol.480, p.136327-136327, Article 136327
Hauptverfasser: Zhu, Shiye, Chen, Anwei, Zhang, Jiale, Luo, Si, Yang, Jizhao, Chai, Youzheng, Zeng, Jianhua, Bai, Ma, Yang, Zhenghang, Lu, Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136327
container_issue
container_start_page 136327
container_title Journal of hazardous materials
container_volume 480
creator Zhu, Shiye
Chen, Anwei
Zhang, Jiale
Luo, Si
Yang, Jizhao
Chai, Youzheng
Zeng, Jianhua
Bai, Ma
Yang, Zhenghang
Lu, Gen
description Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere. [Display omitted] •P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.
doi_str_mv 10.1016/j.jhazmat.2024.136327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154170883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389424029066</els_id><sourcerecordid>3154170883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EYsrAI4C8ZDEpdpzYLhuEhqs0EkjA2jpxThpXcVxsB-i8GK-HSwtbWP2S_V-k8xHymLM1Z1w-2613I9x6yOua1c2aCylqdYesuFaiEkLIu2TFBGsqoTfNBXmQ0o4xxlXb3CcXYtNoXstmRX6-Quv2I0Y3b2kekXYu9LiN0EN2YaZhKK8OPOYx_ABPuwP9OMKMMdgRMCO1YzykkPYhusXT7y6PdIa8RJhocn3pzficfjqUxNal7Cz1WJKzSz5d0RxhTja6fQ7e2VTKIILNJXX7e_6KwtxTHya0ywSxNPqix5-H5N4AU8JHZ70kX968_nz9rrr58Pb99cubytZK5kpzhQiDFcKibmuuhWpUUckHtenbRom6U_UwDD2XCkC0oLFVQ9fyngkppbgkT0-9-xi-Lpiy8S5ZnKZyg7AkI3jbcMW0Fv9hrQVTgulNsbYnq40hpYiD2UfnIR4MZ-aI1-zMGa854jUnvCX35DyxdB77v6k_PIvhxcmA5SbfHEaTrMPZYu8i2mz64P4x8Quh9L6x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123073089</pqid></control><display><type>article</type><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</creator><creatorcontrib>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</creatorcontrib><description>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere. [Display omitted] •P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2024.136327</identifier><identifier>PMID: 39481264</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>biodegradation ; Biodegradation, Environmental ; Bioleaching ; biomineralization ; biosphere ; biotransformation ; coculture ; coevolution ; cytochrome P-450 ; dose response ; energy metabolism ; Fungal adaptability ; Fungal-mineral interaction ; Insecticides - chemistry ; Insecticides - metabolism ; MD simulation ; molecular dynamics ; Molecular Dynamics Simulation ; Neonicotinoid pesticide ; Neonicotinoids - chemistry ; Neonicotinoids - metabolism ; oxidative stress ; Phanerochaete - genetics ; Phanerochaete - metabolism ; Phanerochaete chrysosporium ; siderite ; soil ; stress response ; thiamethoxam ; Thiamethoxam - metabolism ; Transcriptome ; transcriptomics ; white-rot fungi</subject><ispartof>Journal of hazardous materials, 2024-12, Vol.480, p.136327-136327, Article 136327</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389424029066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39481264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Shiye</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Luo, Si</creatorcontrib><creatorcontrib>Yang, Jizhao</creatorcontrib><creatorcontrib>Chai, Youzheng</creatorcontrib><creatorcontrib>Zeng, Jianhua</creatorcontrib><creatorcontrib>Bai, Ma</creatorcontrib><creatorcontrib>Yang, Zhenghang</creatorcontrib><creatorcontrib>Lu, Gen</creatorcontrib><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere. [Display omitted] •P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</description><subject>biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioleaching</subject><subject>biomineralization</subject><subject>biosphere</subject><subject>biotransformation</subject><subject>coculture</subject><subject>coevolution</subject><subject>cytochrome P-450</subject><subject>dose response</subject><subject>energy metabolism</subject><subject>Fungal adaptability</subject><subject>Fungal-mineral interaction</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - metabolism</subject><subject>MD simulation</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Neonicotinoid pesticide</subject><subject>Neonicotinoids - chemistry</subject><subject>Neonicotinoids - metabolism</subject><subject>oxidative stress</subject><subject>Phanerochaete - genetics</subject><subject>Phanerochaete - metabolism</subject><subject>Phanerochaete chrysosporium</subject><subject>siderite</subject><subject>soil</subject><subject>stress response</subject><subject>thiamethoxam</subject><subject>Thiamethoxam - metabolism</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>white-rot fungi</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO0zAUhi0EYsrAI4C8ZDEpdpzYLhuEhqs0EkjA2jpxThpXcVxsB-i8GK-HSwtbWP2S_V-k8xHymLM1Z1w-2613I9x6yOua1c2aCylqdYesuFaiEkLIu2TFBGsqoTfNBXmQ0o4xxlXb3CcXYtNoXstmRX6-Quv2I0Y3b2kekXYu9LiN0EN2YaZhKK8OPOYx_ABPuwP9OMKMMdgRMCO1YzykkPYhusXT7y6PdIa8RJhocn3pzficfjqUxNal7Cz1WJKzSz5d0RxhTja6fQ7e2VTKIILNJXX7e_6KwtxTHya0ywSxNPqix5-H5N4AU8JHZ70kX968_nz9rrr58Pb99cubytZK5kpzhQiDFcKibmuuhWpUUckHtenbRom6U_UwDD2XCkC0oLFVQ9fyngkppbgkT0-9-xi-Lpiy8S5ZnKZyg7AkI3jbcMW0Fv9hrQVTgulNsbYnq40hpYiD2UfnIR4MZ-aI1-zMGa854jUnvCX35DyxdB77v6k_PIvhxcmA5SbfHEaTrMPZYu8i2mz64P4x8Quh9L6x</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Zhu, Shiye</creator><creator>Chen, Anwei</creator><creator>Zhang, Jiale</creator><creator>Luo, Si</creator><creator>Yang, Jizhao</creator><creator>Chai, Youzheng</creator><creator>Zeng, Jianhua</creator><creator>Bai, Ma</creator><creator>Yang, Zhenghang</creator><creator>Lu, Gen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241205</creationdate><title>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</title><author>Zhu, Shiye ; Chen, Anwei ; Zhang, Jiale ; Luo, Si ; Yang, Jizhao ; Chai, Youzheng ; Zeng, Jianhua ; Bai, Ma ; Yang, Zhenghang ; Lu, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-817eeafc33ce85218374752161f79d54732b72fffd167aa35a8e57fb51d036663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioleaching</topic><topic>biomineralization</topic><topic>biosphere</topic><topic>biotransformation</topic><topic>coculture</topic><topic>coevolution</topic><topic>cytochrome P-450</topic><topic>dose response</topic><topic>energy metabolism</topic><topic>Fungal adaptability</topic><topic>Fungal-mineral interaction</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - metabolism</topic><topic>MD simulation</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Neonicotinoid pesticide</topic><topic>Neonicotinoids - chemistry</topic><topic>Neonicotinoids - metabolism</topic><topic>oxidative stress</topic><topic>Phanerochaete - genetics</topic><topic>Phanerochaete - metabolism</topic><topic>Phanerochaete chrysosporium</topic><topic>siderite</topic><topic>soil</topic><topic>stress response</topic><topic>thiamethoxam</topic><topic>Thiamethoxam - metabolism</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>white-rot fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shiye</creatorcontrib><creatorcontrib>Chen, Anwei</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Luo, Si</creatorcontrib><creatorcontrib>Yang, Jizhao</creatorcontrib><creatorcontrib>Chai, Youzheng</creatorcontrib><creatorcontrib>Zeng, Jianhua</creatorcontrib><creatorcontrib>Bai, Ma</creatorcontrib><creatorcontrib>Yang, Zhenghang</creatorcontrib><creatorcontrib>Lu, Gen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shiye</au><au>Chen, Anwei</au><au>Zhang, Jiale</au><au>Luo, Si</au><au>Yang, Jizhao</au><au>Chai, Youzheng</au><au>Zeng, Jianhua</au><au>Bai, Ma</au><au>Yang, Zhenghang</au><au>Lu, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>480</volume><spage>136327</spage><epage>136327</epage><pages>136327-136327</pages><artnum>136327</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite’s dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere. [Display omitted] •P. chrysosporium could tolerate thiamethoxam and degrade 86 % for 25 days.•Fungi could affect mineral dissolution, transformation, and precipitation through their biological activities.•Fungi-Mineral interactions triggered physiological adaptation and resilience in fungi.•Molecular analysis elucidated that THX stably bonded to catalytic center of degrading enzymes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39481264</pmid><doi>10.1016/j.jhazmat.2024.136327</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2024-12, Vol.480, p.136327-136327, Article 136327
issn 0304-3894
1873-3336
1873-3336
language eng
recordid cdi_proquest_miscellaneous_3154170883
source MEDLINE; Elsevier ScienceDirect Journals
subjects biodegradation
Biodegradation, Environmental
Bioleaching
biomineralization
biosphere
biotransformation
coculture
coevolution
cytochrome P-450
dose response
energy metabolism
Fungal adaptability
Fungal-mineral interaction
Insecticides - chemistry
Insecticides - metabolism
MD simulation
molecular dynamics
Molecular Dynamics Simulation
Neonicotinoid pesticide
Neonicotinoids - chemistry
Neonicotinoids - metabolism
oxidative stress
Phanerochaete - genetics
Phanerochaete - metabolism
Phanerochaete chrysosporium
siderite
soil
stress response
thiamethoxam
Thiamethoxam - metabolism
Transcriptome
transcriptomics
white-rot fungi
title Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20biodegradation%20of%20thiamethoxam%20by%20Phanerochaete%20chrysosporium%20with%20natural%20siderite:%20Synergistic%20mechanisms,%20transcriptomics%20characterization,%20and%20molecular%20simulation&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Zhu,%20Shiye&rft.date=2024-12-05&rft.volume=480&rft.spage=136327&rft.epage=136327&rft.pages=136327-136327&rft.artnum=136327&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2024.136327&rft_dat=%3Cproquest_cross%3E3154170883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123073089&rft_id=info:pmid/39481264&rft_els_id=S0304389424029066&rfr_iscdi=true