Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen
To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD th...
Gespeichert in:
Veröffentlicht in: | Vaccine 2024-05, Vol.42 (14), p.3355-3364 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3364 |
---|---|
container_issue | 14 |
container_start_page | 3355 |
container_title | Vaccine |
container_volume | 42 |
creator | Ramos-Duarte, Victor A. Orlowski, Alejandro Jaquenod de Giusti, Carolina Corigliano, Mariana G. Legarralde, Ariel Mendoza-Morales, Luisa F. Atela, Agustín Sánchez, Manuel A. Sander, Valeria A. Angel, Sergio O. Clemente, Marina |
description | To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy “protein mixture” (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design. |
doi_str_mv | 10.1016/j.vaccine.2024.04.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154169555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X2400450X</els_id><sourcerecordid>3051939967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-eb89b396fabb06f37449f5466d493a3de292007661d8a95cda05d385d84cfbae3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModm39CUrAG29mzfdOrqSuHy0UCl0V70ImOSkZdjJjMrPQf2_Krl54UziQBJ73hHMehN5QsqaEqg_9-mCdiwnWjDCxJrW4eoZWtN3whknaPkcrwpRoBCW_ztCrUnpCiORUv0RnvFX1IvQK-Z0NgKe9TTO-KpMm2Pp-OdRnwbCPLs7YJgwhgJvjAXAchiUBzlCmMRXA9t7GVGa8u7zbNdvxJ2s85Ap6fPfpc43O8R7SBXoR7L7A69N5jn58_fJ9e9Xc3H673l7eNE4wNTfQtbrjWgXbdUQFvhFCBymU8kJzyz0wzQjZKEV9a7V03hLpeSt9K1zoLPBz9P7Yd8rj7wXKbIZYHOzrdDAuxXAqBVVaSvk0SgRlvC5MVPTdf2g_LjnVQSolqeZaq02l5JFyeSwlQzBTjoPND4YS82jM9OZkzDwaM6QWVzX39tR96Qbw_1J_FVXg4xGAurlDhGyKi5Ac-JirFOPH-MQXfwAjaagD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051939967</pqid></control><display><type>article</type><title>Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen</title><source>Elsevier ScienceDirect Journals</source><creator>Ramos-Duarte, Victor A. ; Orlowski, Alejandro ; Jaquenod de Giusti, Carolina ; Corigliano, Mariana G. ; Legarralde, Ariel ; Mendoza-Morales, Luisa F. ; Atela, Agustín ; Sánchez, Manuel A. ; Sander, Valeria A. ; Angel, Sergio O. ; Clemente, Marina</creator><creatorcontrib>Ramos-Duarte, Victor A. ; Orlowski, Alejandro ; Jaquenod de Giusti, Carolina ; Corigliano, Mariana G. ; Legarralde, Ariel ; Mendoza-Morales, Luisa F. ; Atela, Agustín ; Sánchez, Manuel A. ; Sander, Valeria A. ; Angel, Sergio O. ; Clemente, Marina</creatorcontrib><description>To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy “protein mixture” (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.</description><identifier>ISSN: 0264-410X</identifier><identifier>ISSN: 1873-2518</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2024.04.036</identifier><identifier>PMID: 38631949</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adjuvants ; Antibodies ; Antigens ; cell-mediated immunity ; COVID-19 vaccines ; Cytokines ; domain ; Hsp90 protein ; Immune response ; Immune response (cell-mediated) ; Immune response (humoral) ; Immune system ; Immunization ; Immunoglobulin G ; Immunomodulation ; Immunoprecipitation ; Infectious diseases ; interleukin-4 ; Laboratory animals ; Neutralizing ; Pandemics ; Pathogens ; Peptides ; Plant Hsp90 ; Plasmids ; precipitin tests ; Proteins ; RBD ; SARS-CoV2 ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike protein ; Spleen ; subunit vaccines ; Vaccines ; Viral infections ; γ-Interferon</subject><ispartof>Vaccine, 2024-05, Vol.42 (14), p.3355-3364</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-eb89b396fabb06f37449f5466d493a3de292007661d8a95cda05d385d84cfbae3</citedby><cites>FETCH-LOGICAL-c426t-eb89b396fabb06f37449f5466d493a3de292007661d8a95cda05d385d84cfbae3</cites><orcidid>0000-0002-9751-2875 ; 0000-0001-9462-5463 ; 0000-0003-4871-3408 ; 0000-0002-0804-1910 ; 0000-0003-0253-3591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264410X2400450X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38631949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos-Duarte, Victor A.</creatorcontrib><creatorcontrib>Orlowski, Alejandro</creatorcontrib><creatorcontrib>Jaquenod de Giusti, Carolina</creatorcontrib><creatorcontrib>Corigliano, Mariana G.</creatorcontrib><creatorcontrib>Legarralde, Ariel</creatorcontrib><creatorcontrib>Mendoza-Morales, Luisa F.</creatorcontrib><creatorcontrib>Atela, Agustín</creatorcontrib><creatorcontrib>Sánchez, Manuel A.</creatorcontrib><creatorcontrib>Sander, Valeria A.</creatorcontrib><creatorcontrib>Angel, Sergio O.</creatorcontrib><creatorcontrib>Clemente, Marina</creatorcontrib><title>Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy “protein mixture” (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.</description><subject>Adjuvants</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>cell-mediated immunity</subject><subject>COVID-19 vaccines</subject><subject>Cytokines</subject><subject>domain</subject><subject>Hsp90 protein</subject><subject>Immune response</subject><subject>Immune response (cell-mediated)</subject><subject>Immune response (humoral)</subject><subject>Immune system</subject><subject>Immunization</subject><subject>Immunoglobulin G</subject><subject>Immunomodulation</subject><subject>Immunoprecipitation</subject><subject>Infectious diseases</subject><subject>interleukin-4</subject><subject>Laboratory animals</subject><subject>Neutralizing</subject><subject>Pandemics</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Plant Hsp90</subject><subject>Plasmids</subject><subject>precipitin tests</subject><subject>Proteins</subject><subject>RBD</subject><subject>SARS-CoV2</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike protein</subject><subject>Spleen</subject><subject>subunit vaccines</subject><subject>Vaccines</subject><subject>Viral infections</subject><subject>γ-Interferon</subject><issn>0264-410X</issn><issn>1873-2518</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1rFDEUhoModm39CUrAG29mzfdOrqSuHy0UCl0V70ImOSkZdjJjMrPQf2_Krl54UziQBJ73hHMehN5QsqaEqg_9-mCdiwnWjDCxJrW4eoZWtN3whknaPkcrwpRoBCW_ztCrUnpCiORUv0RnvFX1IvQK-Z0NgKe9TTO-KpMm2Pp-OdRnwbCPLs7YJgwhgJvjAXAchiUBzlCmMRXA9t7GVGa8u7zbNdvxJ2s85Ap6fPfpc43O8R7SBXoR7L7A69N5jn58_fJ9e9Xc3H673l7eNE4wNTfQtbrjWgXbdUQFvhFCBymU8kJzyz0wzQjZKEV9a7V03hLpeSt9K1zoLPBz9P7Yd8rj7wXKbIZYHOzrdDAuxXAqBVVaSvk0SgRlvC5MVPTdf2g_LjnVQSolqeZaq02l5JFyeSwlQzBTjoPND4YS82jM9OZkzDwaM6QWVzX39tR96Qbw_1J_FVXg4xGAurlDhGyKi5Ac-JirFOPH-MQXfwAjaagD</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Ramos-Duarte, Victor A.</creator><creator>Orlowski, Alejandro</creator><creator>Jaquenod de Giusti, Carolina</creator><creator>Corigliano, Mariana G.</creator><creator>Legarralde, Ariel</creator><creator>Mendoza-Morales, Luisa F.</creator><creator>Atela, Agustín</creator><creator>Sánchez, Manuel A.</creator><creator>Sander, Valeria A.</creator><creator>Angel, Sergio O.</creator><creator>Clemente, Marina</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9751-2875</orcidid><orcidid>https://orcid.org/0000-0001-9462-5463</orcidid><orcidid>https://orcid.org/0000-0003-4871-3408</orcidid><orcidid>https://orcid.org/0000-0002-0804-1910</orcidid><orcidid>https://orcid.org/0000-0003-0253-3591</orcidid></search><sort><creationdate>20240522</creationdate><title>Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen</title><author>Ramos-Duarte, Victor A. ; Orlowski, Alejandro ; Jaquenod de Giusti, Carolina ; Corigliano, Mariana G. ; Legarralde, Ariel ; Mendoza-Morales, Luisa F. ; Atela, Agustín ; Sánchez, Manuel A. ; Sander, Valeria A. ; Angel, Sergio O. ; Clemente, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-eb89b396fabb06f37449f5466d493a3de292007661d8a95cda05d385d84cfbae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adjuvants</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>cell-mediated immunity</topic><topic>COVID-19 vaccines</topic><topic>Cytokines</topic><topic>domain</topic><topic>Hsp90 protein</topic><topic>Immune response</topic><topic>Immune response (cell-mediated)</topic><topic>Immune response (humoral)</topic><topic>Immune system</topic><topic>Immunization</topic><topic>Immunoglobulin G</topic><topic>Immunomodulation</topic><topic>Immunoprecipitation</topic><topic>Infectious diseases</topic><topic>interleukin-4</topic><topic>Laboratory animals</topic><topic>Neutralizing</topic><topic>Pandemics</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Plant Hsp90</topic><topic>Plasmids</topic><topic>precipitin tests</topic><topic>Proteins</topic><topic>RBD</topic><topic>SARS-CoV2</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike protein</topic><topic>Spleen</topic><topic>subunit vaccines</topic><topic>Vaccines</topic><topic>Viral infections</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Duarte, Victor A.</creatorcontrib><creatorcontrib>Orlowski, Alejandro</creatorcontrib><creatorcontrib>Jaquenod de Giusti, Carolina</creatorcontrib><creatorcontrib>Corigliano, Mariana G.</creatorcontrib><creatorcontrib>Legarralde, Ariel</creatorcontrib><creatorcontrib>Mendoza-Morales, Luisa F.</creatorcontrib><creatorcontrib>Atela, Agustín</creatorcontrib><creatorcontrib>Sánchez, Manuel A.</creatorcontrib><creatorcontrib>Sander, Valeria A.</creatorcontrib><creatorcontrib>Angel, Sergio O.</creatorcontrib><creatorcontrib>Clemente, Marina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Duarte, Victor A.</au><au>Orlowski, Alejandro</au><au>Jaquenod de Giusti, Carolina</au><au>Corigliano, Mariana G.</au><au>Legarralde, Ariel</au><au>Mendoza-Morales, Luisa F.</au><au>Atela, Agustín</au><au>Sánchez, Manuel A.</au><au>Sander, Valeria A.</au><au>Angel, Sergio O.</au><au>Clemente, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2024-05-22</date><risdate>2024</risdate><volume>42</volume><issue>14</issue><spage>3355</spage><epage>3364</epage><pages>3355-3364</pages><issn>0264-410X</issn><issn>1873-2518</issn><eissn>1873-2518</eissn><abstract>To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy “protein mixture” (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38631949</pmid><doi>10.1016/j.vaccine.2024.04.036</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9751-2875</orcidid><orcidid>https://orcid.org/0000-0001-9462-5463</orcidid><orcidid>https://orcid.org/0000-0003-4871-3408</orcidid><orcidid>https://orcid.org/0000-0002-0804-1910</orcidid><orcidid>https://orcid.org/0000-0003-0253-3591</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-410X |
ispartof | Vaccine, 2024-05, Vol.42 (14), p.3355-3364 |
issn | 0264-410X 1873-2518 1873-2518 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154169555 |
source | Elsevier ScienceDirect Journals |
subjects | Adjuvants Antibodies Antigens cell-mediated immunity COVID-19 vaccines Cytokines domain Hsp90 protein Immune response Immune response (cell-mediated) Immune response (humoral) Immune system Immunization Immunoglobulin G Immunomodulation Immunoprecipitation Infectious diseases interleukin-4 Laboratory animals Neutralizing Pandemics Pathogens Peptides Plant Hsp90 Plasmids precipitin tests Proteins RBD SARS-CoV2 Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spike protein Spleen subunit vaccines Vaccines Viral infections γ-Interferon |
title | Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20plant%20Hsp90%20adjuvants%20elicit%20an%20effective%20immune%20response%20against%20SARS-CoV2-derived%20RBD%20antigen&rft.jtitle=Vaccine&rft.au=Ramos-Duarte,%20Victor%20A.&rft.date=2024-05-22&rft.volume=42&rft.issue=14&rft.spage=3355&rft.epage=3364&rft.pages=3355-3364&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2024.04.036&rft_dat=%3Cproquest_cross%3E3051939967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051939967&rft_id=info:pmid/38631949&rft_els_id=S0264410X2400450X&rfr_iscdi=true |