Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal

•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2024-12, Vol.267, p.122456, Article 122456
Hauptverfasser: Li, Shuai, Jiang, Xueding, Xu, Weicheng, Li, Meng, Liu, Zhang, Han, Wei, Yu, Chenglong, Li, Jiesen, Wang, Hailong, Yeung, King Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122456
container_title Water research (Oxford)
container_volume 267
creator Li, Shuai
Jiang, Xueding
Xu, Weicheng
Li, Meng
Liu, Zhang
Han, Wei
Yu, Chenglong
Li, Jiesen
Wang, Hailong
Yeung, King Lun
description •Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants. The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater. [Display omitted]
doi_str_mv 10.1016/j.watres.2024.122456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154168879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424013551</els_id><sourcerecordid>3154168879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EotPCGyCUJZsMvuayQUJVoUiV2NC1dcY-AY-cONjOtPMuPCweMmWJWNmy_-8_0vkIecPollHWvN9vHyBHTFtOudwyzqVqnpEN69q-5lJ2z8mGUilqJpS8IJcp7SmlnIv-JbkQvVAtU92G_LqfDui8m75X6NHkGKYqR5jSgLGCyVYRrDPgz48hjpBdycyQfzzAMVVuqkxYZo_2qcBABn9MLv3hZ4xp8QNkrMKjsysdEczpkqrSWPix8I_VHLxfMky5_I_hAP4VeTGAT_j6fF6R-083365v67uvn79cf7yrDW9lri01u4Fy2sjOtBaowgFEJwyzyjTcYNcItev7thmYbQXsWjG0SgEXlHcMbCOuyLu1d47h54Ip69Elg97DhGFJWjAlWdOVzf5HlHHFWy5Yico1amJIKeKg5-hGiEfNqD4p1Hu9KtQnhXpVWLC35wnLbkT7F3pyVgIf1gCWlRwcRp2Mw8mgdbEI0Da4f0_4DZA6s9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112527231</pqid></control><display><type>article</type><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</creator><creatorcontrib>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</creatorcontrib><description>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants. The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater. [Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122456</identifier><identifier>PMID: 39357158</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>activated carbon ; anodes ; Catalysis ; cathodes ; Dual-electrode catalysis ; Electrocatalysis/PMS coupling ; Electrochemical Techniques ; electrochemistry ; Electrodes ; electron transfer ; Electron Transport ; energy ; metronidazole ; Multiple pollutant oxidation ; Non-radical pathway ; oxidation ; Oxidation-Reduction ; Peroxides ; pollutants ; pollution control ; Sulfates - chemistry ; toxicity ; Ultrastable carbon fibers ; Waste Disposal, Fluid - methods ; wastewater ; Wastewater - chemistry ; water ; Water Pollutants, Chemical - chemistry ; Water Purification - methods</subject><ispartof>Water research (Oxford), 2024-12, Vol.267, p.122456, Article 122456</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</cites><orcidid>0000-0002-6970-8483 ; 0000-0002-4808-0711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135424013551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Jiang, Xueding</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Zhang</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Yu, Chenglong</creatorcontrib><creatorcontrib>Li, Jiesen</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Yeung, King Lun</creatorcontrib><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants. The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater. [Display omitted]</description><subject>activated carbon</subject><subject>anodes</subject><subject>Catalysis</subject><subject>cathodes</subject><subject>Dual-electrode catalysis</subject><subject>Electrocatalysis/PMS coupling</subject><subject>Electrochemical Techniques</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>electron transfer</subject><subject>Electron Transport</subject><subject>energy</subject><subject>metronidazole</subject><subject>Multiple pollutant oxidation</subject><subject>Non-radical pathway</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxides</subject><subject>pollutants</subject><subject>pollution control</subject><subject>Sulfates - chemistry</subject><subject>toxicity</subject><subject>Ultrastable carbon fibers</subject><subject>Waste Disposal, Fluid - methods</subject><subject>wastewater</subject><subject>Wastewater - chemistry</subject><subject>water</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EotPCGyCUJZsMvuayQUJVoUiV2NC1dcY-AY-cONjOtPMuPCweMmWJWNmy_-8_0vkIecPollHWvN9vHyBHTFtOudwyzqVqnpEN69q-5lJ2z8mGUilqJpS8IJcp7SmlnIv-JbkQvVAtU92G_LqfDui8m75X6NHkGKYqR5jSgLGCyVYRrDPgz48hjpBdycyQfzzAMVVuqkxYZo_2qcBABn9MLv3hZ4xp8QNkrMKjsysdEczpkqrSWPix8I_VHLxfMky5_I_hAP4VeTGAT_j6fF6R-083365v67uvn79cf7yrDW9lri01u4Fy2sjOtBaowgFEJwyzyjTcYNcItev7thmYbQXsWjG0SgEXlHcMbCOuyLu1d47h54Ip69Elg97DhGFJWjAlWdOVzf5HlHHFWy5Yico1amJIKeKg5-hGiEfNqD4p1Hu9KtQnhXpVWLC35wnLbkT7F3pyVgIf1gCWlRwcRp2Mw8mgdbEI0Da4f0_4DZA6s9o</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Shuai</creator><creator>Jiang, Xueding</creator><creator>Xu, Weicheng</creator><creator>Li, Meng</creator><creator>Liu, Zhang</creator><creator>Han, Wei</creator><creator>Yu, Chenglong</creator><creator>Li, Jiesen</creator><creator>Wang, Hailong</creator><creator>Yeung, King Lun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6970-8483</orcidid><orcidid>https://orcid.org/0000-0002-4808-0711</orcidid></search><sort><creationdate>20241201</creationdate><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><author>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>activated carbon</topic><topic>anodes</topic><topic>Catalysis</topic><topic>cathodes</topic><topic>Dual-electrode catalysis</topic><topic>Electrocatalysis/PMS coupling</topic><topic>Electrochemical Techniques</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>electron transfer</topic><topic>Electron Transport</topic><topic>energy</topic><topic>metronidazole</topic><topic>Multiple pollutant oxidation</topic><topic>Non-radical pathway</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxides</topic><topic>pollutants</topic><topic>pollution control</topic><topic>Sulfates - chemistry</topic><topic>toxicity</topic><topic>Ultrastable carbon fibers</topic><topic>Waste Disposal, Fluid - methods</topic><topic>wastewater</topic><topic>Wastewater - chemistry</topic><topic>water</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Jiang, Xueding</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Zhang</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Yu, Chenglong</creatorcontrib><creatorcontrib>Li, Jiesen</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Yeung, King Lun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuai</au><au>Jiang, Xueding</au><au>Xu, Weicheng</au><au>Li, Meng</au><au>Liu, Zhang</au><au>Han, Wei</au><au>Yu, Chenglong</au><au>Li, Jiesen</au><au>Wang, Hailong</au><au>Yeung, King Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>267</volume><spage>122456</spage><pages>122456-</pages><artnum>122456</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants. The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39357158</pmid><doi>10.1016/j.watres.2024.122456</doi><orcidid>https://orcid.org/0000-0002-6970-8483</orcidid><orcidid>https://orcid.org/0000-0002-4808-0711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2024-12, Vol.267, p.122456, Article 122456
issn 0043-1354
1879-2448
1879-2448
language eng
recordid cdi_proquest_miscellaneous_3154168879
source MEDLINE; Elsevier ScienceDirect Journals
subjects activated carbon
anodes
Catalysis
cathodes
Dual-electrode catalysis
Electrocatalysis/PMS coupling
Electrochemical Techniques
electrochemistry
Electrodes
electron transfer
Electron Transport
energy
metronidazole
Multiple pollutant oxidation
Non-radical pathway
oxidation
Oxidation-Reduction
Peroxides
pollutants
pollution control
Sulfates - chemistry
toxicity
Ultrastable carbon fibers
Waste Disposal, Fluid - methods
wastewater
Wastewater - chemistry
water
Water Pollutants, Chemical - chemistry
Water Purification - methods
title Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20electron%20transfer%20and%20radical%20transformation%20pathways%20in%20coupled%20electrocatalysis%20and%20persulfate%20oxidation%20reactions%20for%20complex%20pollutant%20removal&rft.jtitle=Water%20research%20(Oxford)&rft.au=Li,%20Shuai&rft.date=2024-12-01&rft.volume=267&rft.spage=122456&rft.pages=122456-&rft.artnum=122456&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122456&rft_dat=%3Cproquest_cross%3E3154168879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112527231&rft_id=info:pmid/39357158&rft_els_id=S0043135424013551&rfr_iscdi=true