Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal
•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2024-12, Vol.267, p.122456, Article 122456 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122456 |
container_title | Water research (Oxford) |
container_volume | 267 |
creator | Li, Shuai Jiang, Xueding Xu, Weicheng Li, Meng Liu, Zhang Han, Wei Yu, Chenglong Li, Jiesen Wang, Hailong Yeung, King Lun |
description | •Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants.
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
[Display omitted] |
doi_str_mv | 10.1016/j.watres.2024.122456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154168879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424013551</els_id><sourcerecordid>3154168879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EotPCGyCUJZsMvuayQUJVoUiV2NC1dcY-AY-cONjOtPMuPCweMmWJWNmy_-8_0vkIecPollHWvN9vHyBHTFtOudwyzqVqnpEN69q-5lJ2z8mGUilqJpS8IJcp7SmlnIv-JbkQvVAtU92G_LqfDui8m75X6NHkGKYqR5jSgLGCyVYRrDPgz48hjpBdycyQfzzAMVVuqkxYZo_2qcBABn9MLv3hZ4xp8QNkrMKjsysdEczpkqrSWPix8I_VHLxfMky5_I_hAP4VeTGAT_j6fF6R-083365v67uvn79cf7yrDW9lri01u4Fy2sjOtBaowgFEJwyzyjTcYNcItev7thmYbQXsWjG0SgEXlHcMbCOuyLu1d47h54Ip69Elg97DhGFJWjAlWdOVzf5HlHHFWy5Yico1amJIKeKg5-hGiEfNqD4p1Hu9KtQnhXpVWLC35wnLbkT7F3pyVgIf1gCWlRwcRp2Mw8mgdbEI0Da4f0_4DZA6s9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112527231</pqid></control><display><type>article</type><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</creator><creatorcontrib>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</creatorcontrib><description>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants.
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
[Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122456</identifier><identifier>PMID: 39357158</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>activated carbon ; anodes ; Catalysis ; cathodes ; Dual-electrode catalysis ; Electrocatalysis/PMS coupling ; Electrochemical Techniques ; electrochemistry ; Electrodes ; electron transfer ; Electron Transport ; energy ; metronidazole ; Multiple pollutant oxidation ; Non-radical pathway ; oxidation ; Oxidation-Reduction ; Peroxides ; pollutants ; pollution control ; Sulfates - chemistry ; toxicity ; Ultrastable carbon fibers ; Waste Disposal, Fluid - methods ; wastewater ; Wastewater - chemistry ; water ; Water Pollutants, Chemical - chemistry ; Water Purification - methods</subject><ispartof>Water research (Oxford), 2024-12, Vol.267, p.122456, Article 122456</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</cites><orcidid>0000-0002-6970-8483 ; 0000-0002-4808-0711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135424013551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Jiang, Xueding</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Zhang</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Yu, Chenglong</creatorcontrib><creatorcontrib>Li, Jiesen</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Yeung, King Lun</creatorcontrib><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants.
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
[Display omitted]</description><subject>activated carbon</subject><subject>anodes</subject><subject>Catalysis</subject><subject>cathodes</subject><subject>Dual-electrode catalysis</subject><subject>Electrocatalysis/PMS coupling</subject><subject>Electrochemical Techniques</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>electron transfer</subject><subject>Electron Transport</subject><subject>energy</subject><subject>metronidazole</subject><subject>Multiple pollutant oxidation</subject><subject>Non-radical pathway</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxides</subject><subject>pollutants</subject><subject>pollution control</subject><subject>Sulfates - chemistry</subject><subject>toxicity</subject><subject>Ultrastable carbon fibers</subject><subject>Waste Disposal, Fluid - methods</subject><subject>wastewater</subject><subject>Wastewater - chemistry</subject><subject>water</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EotPCGyCUJZsMvuayQUJVoUiV2NC1dcY-AY-cONjOtPMuPCweMmWJWNmy_-8_0vkIecPollHWvN9vHyBHTFtOudwyzqVqnpEN69q-5lJ2z8mGUilqJpS8IJcp7SmlnIv-JbkQvVAtU92G_LqfDui8m75X6NHkGKYqR5jSgLGCyVYRrDPgz48hjpBdycyQfzzAMVVuqkxYZo_2qcBABn9MLv3hZ4xp8QNkrMKjsysdEczpkqrSWPix8I_VHLxfMky5_I_hAP4VeTGAT_j6fF6R-083365v67uvn79cf7yrDW9lri01u4Fy2sjOtBaowgFEJwyzyjTcYNcItev7thmYbQXsWjG0SgEXlHcMbCOuyLu1d47h54Ip69Elg97DhGFJWjAlWdOVzf5HlHHFWy5Yico1amJIKeKg5-hGiEfNqD4p1Hu9KtQnhXpVWLC35wnLbkT7F3pyVgIf1gCWlRwcRp2Mw8mgdbEI0Da4f0_4DZA6s9o</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Shuai</creator><creator>Jiang, Xueding</creator><creator>Xu, Weicheng</creator><creator>Li, Meng</creator><creator>Liu, Zhang</creator><creator>Han, Wei</creator><creator>Yu, Chenglong</creator><creator>Li, Jiesen</creator><creator>Wang, Hailong</creator><creator>Yeung, King Lun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6970-8483</orcidid><orcidid>https://orcid.org/0000-0002-4808-0711</orcidid></search><sort><creationdate>20241201</creationdate><title>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</title><author>Li, Shuai ; Jiang, Xueding ; Xu, Weicheng ; Li, Meng ; Liu, Zhang ; Han, Wei ; Yu, Chenglong ; Li, Jiesen ; Wang, Hailong ; Yeung, King Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-d0cbf020648c7da05efa383c1d5c62ce8635b9976f1d73ab73f755a230281ad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>activated carbon</topic><topic>anodes</topic><topic>Catalysis</topic><topic>cathodes</topic><topic>Dual-electrode catalysis</topic><topic>Electrocatalysis/PMS coupling</topic><topic>Electrochemical Techniques</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>electron transfer</topic><topic>Electron Transport</topic><topic>energy</topic><topic>metronidazole</topic><topic>Multiple pollutant oxidation</topic><topic>Non-radical pathway</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxides</topic><topic>pollutants</topic><topic>pollution control</topic><topic>Sulfates - chemistry</topic><topic>toxicity</topic><topic>Ultrastable carbon fibers</topic><topic>Waste Disposal, Fluid - methods</topic><topic>wastewater</topic><topic>Wastewater - chemistry</topic><topic>water</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Jiang, Xueding</creatorcontrib><creatorcontrib>Xu, Weicheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Zhang</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Yu, Chenglong</creatorcontrib><creatorcontrib>Li, Jiesen</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Yeung, King Lun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuai</au><au>Jiang, Xueding</au><au>Xu, Weicheng</au><au>Li, Meng</au><au>Liu, Zhang</au><au>Han, Wei</au><au>Yu, Chenglong</au><au>Li, Jiesen</au><au>Wang, Hailong</au><au>Yeung, King Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>267</volume><spage>122456</spage><pages>122456-</pages><artnum>122456</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Selective electrocatalytic oxidation of pollutants occurs at anodes and cathodes.•Direct electron transfer and singlet oxygen pathway control over the reaction kinetics.•Radical and non-radical transformation mechanism is revealed in the E/PMS system.•The intensity of interaction of PMS with binary pollutants dominates by H-bond.•Low energy consumption of the E/PMS system for removing complex pollutants.
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m−3·order−1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39357158</pmid><doi>10.1016/j.watres.2024.122456</doi><orcidid>https://orcid.org/0000-0002-6970-8483</orcidid><orcidid>https://orcid.org/0000-0002-4808-0711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2024-12, Vol.267, p.122456, Article 122456 |
issn | 0043-1354 1879-2448 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154168879 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | activated carbon anodes Catalysis cathodes Dual-electrode catalysis Electrocatalysis/PMS coupling Electrochemical Techniques electrochemistry Electrodes electron transfer Electron Transport energy metronidazole Multiple pollutant oxidation Non-radical pathway oxidation Oxidation-Reduction Peroxides pollutants pollution control Sulfates - chemistry toxicity Ultrastable carbon fibers Waste Disposal, Fluid - methods wastewater Wastewater - chemistry water Water Pollutants, Chemical - chemistry Water Purification - methods |
title | Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20electron%20transfer%20and%20radical%20transformation%20pathways%20in%20coupled%20electrocatalysis%20and%20persulfate%20oxidation%20reactions%20for%20complex%20pollutant%20removal&rft.jtitle=Water%20research%20(Oxford)&rft.au=Li,%20Shuai&rft.date=2024-12-01&rft.volume=267&rft.spage=122456&rft.pages=122456-&rft.artnum=122456&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122456&rft_dat=%3Cproquest_cross%3E3154168879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112527231&rft_id=info:pmid/39357158&rft_els_id=S0043135424013551&rfr_iscdi=true |