Temperature differentially regulates estuarine microbial N2O production along a salinity gradient

•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2024-12, Vol.267, p.122454, Article 122454
Hauptverfasser: Mao, Tie-Qiang, Zhang, Yong, Ou, Ya-Fei, Li, Xiao-Fei, Zheng, Yan-Ling, Liang, Xia, Liu, Min, Hou, Li-Jun, Dong, Hong-Po
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122454
container_title Water research (Oxford)
container_volume 267
creator Mao, Tie-Qiang
Zhang, Yong
Ou, Ya-Fei
Li, Xiao-Fei
Zheng, Yan-Ling
Liang, Xia
Liu, Min
Hou, Li-Jun
Dong, Hong-Po
description •Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming. [Display omitted]
doi_str_mv 10.1016/j.watres.2024.122454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154168008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424013538</els_id><sourcerecordid>3106732715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</originalsourceid><addsrcrecordid>eNqNkDFv2zAQhYmgBeK6_QcZOHaRS1IURS0FgqBNCxj14p04n44GDVlySCqF_31oKHPR6YZ77-G9j7EHKTZSSPPttPkLOVLaKKH0RiqlG33HVtK2XaW0th_YSghdV7Ju9D37lNJJCKFU3a0Y7Ol8oQh5jsT74D1FGnOAYbjySMd5gEyJU8ozxDASPweM06H8-R-145c49TPmMI0chmk8cuAJhjCGfOXHCH0oWZ_ZRw9Doi_vd832P3_sn35V293z76fHbYWqkbmyBrHpdK-1atpeSiOt7UgZlKpuW0DErrdGe_QaAY1vfAtgPOpDe7Aa6zX7usSWTi9zKezOISENA4w0zcnVstHSWCHsf0iFaWvVyqZI9SItq1OK5N0lhjPEq5PC3di7k1vYuxt7t7Avtu-Ljcrg10DRJSwskPoQCbPrp_DvgDfqW5De</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106732715</pqid></control><display><type>article</type><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><source>Elsevier ScienceDirect Journals</source><creator>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creator><creatorcontrib>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creatorcontrib><description>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming. [Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122454</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ammonia ; Aquatic microbes ; brackish water ; climate change ; climatic factors ; denitrification ; denitrifying microorganisms ; estuaries ; heat tolerance ; metagenomics ; Metatranscriptome ; N2O production ; nitrite reductase ; nitrites ; nitrous oxide ; nitrous oxide production ; nitrous-oxide reductase ; ozone ; salinity ; stable isotopes ; stratosphere ; Temperature ; transcriptomics ; Yangtze River estuary</subject><ispartof>Water research (Oxford), 2024-12, Vol.267, p.122454, Article 122454</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</cites><orcidid>0000-0002-7172-794X ; 0000-0002-3785-0741 ; 0000-0001-8805-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135424013538$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><title>Water research (Oxford)</title><description>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming. [Display omitted]</description><subject>ammonia</subject><subject>Aquatic microbes</subject><subject>brackish water</subject><subject>climate change</subject><subject>climatic factors</subject><subject>denitrification</subject><subject>denitrifying microorganisms</subject><subject>estuaries</subject><subject>heat tolerance</subject><subject>metagenomics</subject><subject>Metatranscriptome</subject><subject>N2O production</subject><subject>nitrite reductase</subject><subject>nitrites</subject><subject>nitrous oxide</subject><subject>nitrous oxide production</subject><subject>nitrous-oxide reductase</subject><subject>ozone</subject><subject>salinity</subject><subject>stable isotopes</subject><subject>stratosphere</subject><subject>Temperature</subject><subject>transcriptomics</subject><subject>Yangtze River estuary</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkDFv2zAQhYmgBeK6_QcZOHaRS1IURS0FgqBNCxj14p04n44GDVlySCqF_31oKHPR6YZ77-G9j7EHKTZSSPPttPkLOVLaKKH0RiqlG33HVtK2XaW0th_YSghdV7Ju9D37lNJJCKFU3a0Y7Ol8oQh5jsT74D1FGnOAYbjySMd5gEyJU8ozxDASPweM06H8-R-145c49TPmMI0chmk8cuAJhjCGfOXHCH0oWZ_ZRw9Doi_vd832P3_sn35V293z76fHbYWqkbmyBrHpdK-1atpeSiOt7UgZlKpuW0DErrdGe_QaAY1vfAtgPOpDe7Aa6zX7usSWTi9zKezOISENA4w0zcnVstHSWCHsf0iFaWvVyqZI9SItq1OK5N0lhjPEq5PC3di7k1vYuxt7t7Avtu-Ljcrg10DRJSwskPoQCbPrp_DvgDfqW5De</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mao, Tie-Qiang</creator><creator>Zhang, Yong</creator><creator>Ou, Ya-Fei</creator><creator>Li, Xiao-Fei</creator><creator>Zheng, Yan-Ling</creator><creator>Liang, Xia</creator><creator>Liu, Min</creator><creator>Hou, Li-Jun</creator><creator>Dong, Hong-Po</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7172-794X</orcidid><orcidid>https://orcid.org/0000-0002-3785-0741</orcidid><orcidid>https://orcid.org/0000-0001-8805-1205</orcidid></search><sort><creationdate>20241201</creationdate><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><author>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>Aquatic microbes</topic><topic>brackish water</topic><topic>climate change</topic><topic>climatic factors</topic><topic>denitrification</topic><topic>denitrifying microorganisms</topic><topic>estuaries</topic><topic>heat tolerance</topic><topic>metagenomics</topic><topic>Metatranscriptome</topic><topic>N2O production</topic><topic>nitrite reductase</topic><topic>nitrites</topic><topic>nitrous oxide</topic><topic>nitrous oxide production</topic><topic>nitrous-oxide reductase</topic><topic>ozone</topic><topic>salinity</topic><topic>stable isotopes</topic><topic>stratosphere</topic><topic>Temperature</topic><topic>transcriptomics</topic><topic>Yangtze River estuary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Tie-Qiang</au><au>Zhang, Yong</au><au>Ou, Ya-Fei</au><au>Li, Xiao-Fei</au><au>Zheng, Yan-Ling</au><au>Liang, Xia</au><au>Liu, Min</au><au>Hou, Li-Jun</au><au>Dong, Hong-Po</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</atitle><jtitle>Water research (Oxford)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>267</volume><spage>122454</spage><pages>122454-</pages><artnum>122454</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.watres.2024.122454</doi><orcidid>https://orcid.org/0000-0002-7172-794X</orcidid><orcidid>https://orcid.org/0000-0002-3785-0741</orcidid><orcidid>https://orcid.org/0000-0001-8805-1205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2024-12, Vol.267, p.122454, Article 122454
issn 0043-1354
1879-2448
1879-2448
language eng
recordid cdi_proquest_miscellaneous_3154168008
source Elsevier ScienceDirect Journals
subjects ammonia
Aquatic microbes
brackish water
climate change
climatic factors
denitrification
denitrifying microorganisms
estuaries
heat tolerance
metagenomics
Metatranscriptome
N2O production
nitrite reductase
nitrites
nitrous oxide
nitrous oxide production
nitrous-oxide reductase
ozone
salinity
stable isotopes
stratosphere
Temperature
transcriptomics
Yangtze River estuary
title Temperature differentially regulates estuarine microbial N2O production along a salinity gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20differentially%20regulates%20estuarine%20microbial%20N2O%20production%20along%20a%20salinity%20gradient&rft.jtitle=Water%20research%20(Oxford)&rft.au=Mao,%20Tie-Qiang&rft.date=2024-12-01&rft.volume=267&rft.spage=122454&rft.pages=122454-&rft.artnum=122454&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122454&rft_dat=%3Cproquest_cross%3E3106732715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106732715&rft_id=info:pmid/&rft_els_id=S0043135424013538&rfr_iscdi=true