Temperature differentially regulates estuarine microbial N2O production along a salinity gradient
•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water. Nitrous oxide (N2O) is atmospher...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2024-12, Vol.267, p.122454, Article 122454 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122454 |
container_title | Water research (Oxford) |
container_volume | 267 |
creator | Mao, Tie-Qiang Zhang, Yong Ou, Ya-Fei Li, Xiao-Fei Zheng, Yan-Ling Liang, Xia Liu, Min Hou, Li-Jun Dong, Hong-Po |
description | •Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water.
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
[Display omitted] |
doi_str_mv | 10.1016/j.watres.2024.122454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154168008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424013538</els_id><sourcerecordid>3106732715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</originalsourceid><addsrcrecordid>eNqNkDFv2zAQhYmgBeK6_QcZOHaRS1IURS0FgqBNCxj14p04n44GDVlySCqF_31oKHPR6YZ77-G9j7EHKTZSSPPttPkLOVLaKKH0RiqlG33HVtK2XaW0th_YSghdV7Ju9D37lNJJCKFU3a0Y7Ol8oQh5jsT74D1FGnOAYbjySMd5gEyJU8ozxDASPweM06H8-R-145c49TPmMI0chmk8cuAJhjCGfOXHCH0oWZ_ZRw9Doi_vd832P3_sn35V293z76fHbYWqkbmyBrHpdK-1atpeSiOt7UgZlKpuW0DErrdGe_QaAY1vfAtgPOpDe7Aa6zX7usSWTi9zKezOISENA4w0zcnVstHSWCHsf0iFaWvVyqZI9SItq1OK5N0lhjPEq5PC3di7k1vYuxt7t7Avtu-Ljcrg10DRJSwskPoQCbPrp_DvgDfqW5De</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106732715</pqid></control><display><type>article</type><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><source>Elsevier ScienceDirect Journals</source><creator>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creator><creatorcontrib>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creatorcontrib><description>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water.
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
[Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122454</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ammonia ; Aquatic microbes ; brackish water ; climate change ; climatic factors ; denitrification ; denitrifying microorganisms ; estuaries ; heat tolerance ; metagenomics ; Metatranscriptome ; N2O production ; nitrite reductase ; nitrites ; nitrous oxide ; nitrous oxide production ; nitrous-oxide reductase ; ozone ; salinity ; stable isotopes ; stratosphere ; Temperature ; transcriptomics ; Yangtze River estuary</subject><ispartof>Water research (Oxford), 2024-12, Vol.267, p.122454, Article 122454</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</cites><orcidid>0000-0002-7172-794X ; 0000-0002-3785-0741 ; 0000-0001-8805-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135424013538$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><title>Water research (Oxford)</title><description>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water.
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
[Display omitted]</description><subject>ammonia</subject><subject>Aquatic microbes</subject><subject>brackish water</subject><subject>climate change</subject><subject>climatic factors</subject><subject>denitrification</subject><subject>denitrifying microorganisms</subject><subject>estuaries</subject><subject>heat tolerance</subject><subject>metagenomics</subject><subject>Metatranscriptome</subject><subject>N2O production</subject><subject>nitrite reductase</subject><subject>nitrites</subject><subject>nitrous oxide</subject><subject>nitrous oxide production</subject><subject>nitrous-oxide reductase</subject><subject>ozone</subject><subject>salinity</subject><subject>stable isotopes</subject><subject>stratosphere</subject><subject>Temperature</subject><subject>transcriptomics</subject><subject>Yangtze River estuary</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkDFv2zAQhYmgBeK6_QcZOHaRS1IURS0FgqBNCxj14p04n44GDVlySCqF_31oKHPR6YZ77-G9j7EHKTZSSPPttPkLOVLaKKH0RiqlG33HVtK2XaW0th_YSghdV7Ju9D37lNJJCKFU3a0Y7Ol8oQh5jsT74D1FGnOAYbjySMd5gEyJU8ozxDASPweM06H8-R-145c49TPmMI0chmk8cuAJhjCGfOXHCH0oWZ_ZRw9Doi_vd832P3_sn35V293z76fHbYWqkbmyBrHpdK-1atpeSiOt7UgZlKpuW0DErrdGe_QaAY1vfAtgPOpDe7Aa6zX7usSWTi9zKezOISENA4w0zcnVstHSWCHsf0iFaWvVyqZI9SItq1OK5N0lhjPEq5PC3di7k1vYuxt7t7Avtu-Ljcrg10DRJSwskPoQCbPrp_DvgDfqW5De</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mao, Tie-Qiang</creator><creator>Zhang, Yong</creator><creator>Ou, Ya-Fei</creator><creator>Li, Xiao-Fei</creator><creator>Zheng, Yan-Ling</creator><creator>Liang, Xia</creator><creator>Liu, Min</creator><creator>Hou, Li-Jun</creator><creator>Dong, Hong-Po</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7172-794X</orcidid><orcidid>https://orcid.org/0000-0002-3785-0741</orcidid><orcidid>https://orcid.org/0000-0001-8805-1205</orcidid></search><sort><creationdate>20241201</creationdate><title>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</title><author>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-86cc594d44257d1161889e26c12377accc9d864fcf4cac6f5f7aa6fc4b7b84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>Aquatic microbes</topic><topic>brackish water</topic><topic>climate change</topic><topic>climatic factors</topic><topic>denitrification</topic><topic>denitrifying microorganisms</topic><topic>estuaries</topic><topic>heat tolerance</topic><topic>metagenomics</topic><topic>Metatranscriptome</topic><topic>N2O production</topic><topic>nitrite reductase</topic><topic>nitrites</topic><topic>nitrous oxide</topic><topic>nitrous oxide production</topic><topic>nitrous-oxide reductase</topic><topic>ozone</topic><topic>salinity</topic><topic>stable isotopes</topic><topic>stratosphere</topic><topic>Temperature</topic><topic>transcriptomics</topic><topic>Yangtze River estuary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Tie-Qiang</au><au>Zhang, Yong</au><au>Ou, Ya-Fei</au><au>Li, Xiao-Fei</au><au>Zheng, Yan-Ling</au><au>Liang, Xia</au><au>Liu, Min</au><au>Hou, Li-Jun</au><au>Dong, Hong-Po</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature differentially regulates estuarine microbial N2O production along a salinity gradient</atitle><jtitle>Water research (Oxford)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>267</volume><spage>122454</spage><pages>122454-</pages><artnum>122454</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Divergent thermal response patterns for N2O production were found between nearshore/offshore regions.•Temperature and salinity co-regulate N2O production by AOB via nitrifier denitrification pathway.•Temperature regulate sources of N2O production in estuarine water.
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.watres.2024.122454</doi><orcidid>https://orcid.org/0000-0002-7172-794X</orcidid><orcidid>https://orcid.org/0000-0002-3785-0741</orcidid><orcidid>https://orcid.org/0000-0001-8805-1205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2024-12, Vol.267, p.122454, Article 122454 |
issn | 0043-1354 1879-2448 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154168008 |
source | Elsevier ScienceDirect Journals |
subjects | ammonia Aquatic microbes brackish water climate change climatic factors denitrification denitrifying microorganisms estuaries heat tolerance metagenomics Metatranscriptome N2O production nitrite reductase nitrites nitrous oxide nitrous oxide production nitrous-oxide reductase ozone salinity stable isotopes stratosphere Temperature transcriptomics Yangtze River estuary |
title | Temperature differentially regulates estuarine microbial N2O production along a salinity gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20differentially%20regulates%20estuarine%20microbial%20N2O%20production%20along%20a%20salinity%20gradient&rft.jtitle=Water%20research%20(Oxford)&rft.au=Mao,%20Tie-Qiang&rft.date=2024-12-01&rft.volume=267&rft.spage=122454&rft.pages=122454-&rft.artnum=122454&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122454&rft_dat=%3Cproquest_cross%3E3106732715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106732715&rft_id=info:pmid/&rft_els_id=S0043135424013538&rfr_iscdi=true |