A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate
Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we u...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2024-12, Vol.244 (5), p.1788-1800 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1800 |
---|---|
container_issue | 5 |
container_start_page | 1788 |
container_title | The New phytologist |
container_volume | 244 |
creator | Quetin, Gregory R. Anderegg, Leander D. L. Boving, Indra Trugman, Anna T. |
description | Summary
Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets. |
doi_str_mv | 10.1111/nph.20127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154167342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154167342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</originalsourceid><addsrcrecordid>eNqN0UFLHDEUB_BQKrpVD_0CEuilHmbNS-JM0puIdgWxPSh4GzKZN7uRmcw2mamup36EfkY_idFVD0KhuQTC7_3J40_IZ2BTSOfALxdTzoAXH8gEZK4zBaL4SCaMcZXlMr_eIp9ivGGM6cOcb5ItoQUvEpqQuyPa9b-dn9PBhDkO3-gQTI0Pf_72TRNphcMtoqeduXOdu39y1oSq99T4mnbOv74uVnUwY-ssjUPAGGnTB7psjR8idUlTuzB-_jzfus4MuEM2GtNG3H25t8nV6cnl8Sw7__H97PjoPLMCoMgsWFsJw61WdcWtsdqYWnGtpGwazjRwrBSXtYTa8lwVwKwyRVMhExYTFdvk6zp3GfpfI8ah7Fy02KavYT_GUsChhLwQkv8HBSYZgCoS_fKO3vRj8GmRpLhUWmuuktpfKxv6GAM25TKk5cOqBFY-NVem5srn5pLde0kcqw7rN_laVQIHa3DrWlz9O6m8-DlbRz4CzSakuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124899928</pqid></control><display><type>article</type><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</creator><creatorcontrib>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</creatorcontrib><description>Summary
Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.20127</identifier><identifier>PMID: 39327813</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acclimation ; Acclimatization ; canopy ; Carbon ; Carbon - metabolism ; Carbon cycle ; Carbon dioxide ; Carbon Dioxide - metabolism ; Climate ; Climate Change ; Climate prediction ; CO2 fertilization ; Earth system science ; energy ; Energy budget ; Hydraulics ; Hydrologic cycle ; Hydrological cycle ; Leaf area ; Leaves ; Maximization ; Models, Biological ; mortality ; Moving targets ; net carbon gain ; Net Primary Productivity ; Optimization ; Plant layout ; Plant Leaves - physiology ; Plant stress ; plant water stress ; Plants ; Primary production ; Productivity ; risk ; Stress, Physiological ; Surface energy ; Surface properties ; tree canopy ; trees ; Trees - physiology ; Water - metabolism ; Water - physiology ; Water availability</subject><ispartof>The New phytologist, 2024-12, Vol.244 (5), p.1788-1800</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</cites><orcidid>0000-0002-7884-5332 ; 0000-0002-5144-7254 ; 0000-0002-7903-9711 ; 0000-0002-2176-2819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.20127$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.20127$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39327813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quetin, Gregory R.</creatorcontrib><creatorcontrib>Anderegg, Leander D. L.</creatorcontrib><creatorcontrib>Boving, Indra</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>canopy</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate prediction</subject><subject>CO2 fertilization</subject><subject>Earth system science</subject><subject>energy</subject><subject>Energy budget</subject><subject>Hydraulics</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>Maximization</subject><subject>Models, Biological</subject><subject>mortality</subject><subject>Moving targets</subject><subject>net carbon gain</subject><subject>Net Primary Productivity</subject><subject>Optimization</subject><subject>Plant layout</subject><subject>Plant Leaves - physiology</subject><subject>Plant stress</subject><subject>plant water stress</subject><subject>Plants</subject><subject>Primary production</subject><subject>Productivity</subject><subject>risk</subject><subject>Stress, Physiological</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>tree canopy</subject><subject>trees</subject><subject>Trees - physiology</subject><subject>Water - metabolism</subject><subject>Water - physiology</subject><subject>Water availability</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqN0UFLHDEUB_BQKrpVD_0CEuilHmbNS-JM0puIdgWxPSh4GzKZN7uRmcw2mamup36EfkY_idFVD0KhuQTC7_3J40_IZ2BTSOfALxdTzoAXH8gEZK4zBaL4SCaMcZXlMr_eIp9ivGGM6cOcb5ItoQUvEpqQuyPa9b-dn9PBhDkO3-gQTI0Pf_72TRNphcMtoqeduXOdu39y1oSq99T4mnbOv74uVnUwY-ssjUPAGGnTB7psjR8idUlTuzB-_jzfus4MuEM2GtNG3H25t8nV6cnl8Sw7__H97PjoPLMCoMgsWFsJw61WdcWtsdqYWnGtpGwazjRwrBSXtYTa8lwVwKwyRVMhExYTFdvk6zp3GfpfI8ah7Fy02KavYT_GUsChhLwQkv8HBSYZgCoS_fKO3vRj8GmRpLhUWmuuktpfKxv6GAM25TKk5cOqBFY-NVem5srn5pLde0kcqw7rN_laVQIHa3DrWlz9O6m8-DlbRz4CzSakuw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Quetin, Gregory R.</creator><creator>Anderegg, Leander D. L.</creator><creator>Boving, Indra</creator><creator>Trugman, Anna T.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7884-5332</orcidid><orcidid>https://orcid.org/0000-0002-5144-7254</orcidid><orcidid>https://orcid.org/0000-0002-7903-9711</orcidid><orcidid>https://orcid.org/0000-0002-2176-2819</orcidid></search><sort><creationdate>202412</creationdate><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><author>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>canopy</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate prediction</topic><topic>CO2 fertilization</topic><topic>Earth system science</topic><topic>energy</topic><topic>Energy budget</topic><topic>Hydraulics</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>Maximization</topic><topic>Models, Biological</topic><topic>mortality</topic><topic>Moving targets</topic><topic>net carbon gain</topic><topic>Net Primary Productivity</topic><topic>Optimization</topic><topic>Plant layout</topic><topic>Plant Leaves - physiology</topic><topic>Plant stress</topic><topic>plant water stress</topic><topic>Plants</topic><topic>Primary production</topic><topic>Productivity</topic><topic>risk</topic><topic>Stress, Physiological</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>tree canopy</topic><topic>trees</topic><topic>Trees - physiology</topic><topic>Water - metabolism</topic><topic>Water - physiology</topic><topic>Water availability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quetin, Gregory R.</creatorcontrib><creatorcontrib>Anderegg, Leander D. L.</creatorcontrib><creatorcontrib>Boving, Indra</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quetin, Gregory R.</au><au>Anderegg, Leander D. L.</au><au>Boving, Indra</au><au>Trugman, Anna T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>244</volume><issue>5</issue><spage>1788</spage><epage>1800</epage><pages>1788-1800</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary
Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39327813</pmid><doi>10.1111/nph.20127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7884-5332</orcidid><orcidid>https://orcid.org/0000-0002-5144-7254</orcidid><orcidid>https://orcid.org/0000-0002-7903-9711</orcidid><orcidid>https://orcid.org/0000-0002-2176-2819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-12, Vol.244 (5), p.1788-1800 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154167342 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acclimation Acclimatization canopy Carbon Carbon - metabolism Carbon cycle Carbon dioxide Carbon Dioxide - metabolism Climate Climate Change Climate prediction CO2 fertilization Earth system science energy Energy budget Hydraulics Hydrologic cycle Hydrological cycle Leaf area Leaves Maximization Models, Biological mortality Moving targets net carbon gain Net Primary Productivity Optimization Plant layout Plant Leaves - physiology Plant stress plant water stress Plants Primary production Productivity risk Stress, Physiological Surface energy Surface properties tree canopy trees Trees - physiology Water - metabolism Water - physiology Water availability |
title | A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20target:%20trade%E2%80%90offs%20between%20maximizing%20carbon%20and%20minimizing%20hydraulic%20stress%20for%20plants%20in%20a%20changing%20climate&rft.jtitle=The%20New%20phytologist&rft.au=Quetin,%20Gregory%20R.&rft.date=2024-12&rft.volume=244&rft.issue=5&rft.spage=1788&rft.epage=1800&rft.pages=1788-1800&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.20127&rft_dat=%3Cproquest_cross%3E3154167342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124899928&rft_id=info:pmid/39327813&rfr_iscdi=true |