A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate

Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2024-12, Vol.244 (5), p.1788-1800
Hauptverfasser: Quetin, Gregory R., Anderegg, Leander D. L., Boving, Indra, Trugman, Anna T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1800
container_issue 5
container_start_page 1788
container_title The New phytologist
container_volume 244
creator Quetin, Gregory R.
Anderegg, Leander D. L.
Boving, Indra
Trugman, Anna T.
description Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.
doi_str_mv 10.1111/nph.20127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154167342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154167342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</originalsourceid><addsrcrecordid>eNqN0UFLHDEUB_BQKrpVD_0CEuilHmbNS-JM0puIdgWxPSh4GzKZN7uRmcw2mamup36EfkY_idFVD0KhuQTC7_3J40_IZ2BTSOfALxdTzoAXH8gEZK4zBaL4SCaMcZXlMr_eIp9ivGGM6cOcb5ItoQUvEpqQuyPa9b-dn9PBhDkO3-gQTI0Pf_72TRNphcMtoqeduXOdu39y1oSq99T4mnbOv74uVnUwY-ssjUPAGGnTB7psjR8idUlTuzB-_jzfus4MuEM2GtNG3H25t8nV6cnl8Sw7__H97PjoPLMCoMgsWFsJw61WdcWtsdqYWnGtpGwazjRwrBSXtYTa8lwVwKwyRVMhExYTFdvk6zp3GfpfI8ah7Fy02KavYT_GUsChhLwQkv8HBSYZgCoS_fKO3vRj8GmRpLhUWmuuktpfKxv6GAM25TKk5cOqBFY-NVem5srn5pLde0kcqw7rN_laVQIHa3DrWlz9O6m8-DlbRz4CzSakuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124899928</pqid></control><display><type>article</type><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</creator><creatorcontrib>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</creatorcontrib><description>Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.20127</identifier><identifier>PMID: 39327813</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acclimation ; Acclimatization ; canopy ; Carbon ; Carbon - metabolism ; Carbon cycle ; Carbon dioxide ; Carbon Dioxide - metabolism ; Climate ; Climate Change ; Climate prediction ; CO2 fertilization ; Earth system science ; energy ; Energy budget ; Hydraulics ; Hydrologic cycle ; Hydrological cycle ; Leaf area ; Leaves ; Maximization ; Models, Biological ; mortality ; Moving targets ; net carbon gain ; Net Primary Productivity ; Optimization ; Plant layout ; Plant Leaves - physiology ; Plant stress ; plant water stress ; Plants ; Primary production ; Productivity ; risk ; Stress, Physiological ; Surface energy ; Surface properties ; tree canopy ; trees ; Trees - physiology ; Water - metabolism ; Water - physiology ; Water availability</subject><ispartof>The New phytologist, 2024-12, Vol.244 (5), p.1788-1800</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</cites><orcidid>0000-0002-7884-5332 ; 0000-0002-5144-7254 ; 0000-0002-7903-9711 ; 0000-0002-2176-2819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.20127$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.20127$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39327813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quetin, Gregory R.</creatorcontrib><creatorcontrib>Anderegg, Leander D. L.</creatorcontrib><creatorcontrib>Boving, Indra</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>canopy</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate prediction</subject><subject>CO2 fertilization</subject><subject>Earth system science</subject><subject>energy</subject><subject>Energy budget</subject><subject>Hydraulics</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>Maximization</subject><subject>Models, Biological</subject><subject>mortality</subject><subject>Moving targets</subject><subject>net carbon gain</subject><subject>Net Primary Productivity</subject><subject>Optimization</subject><subject>Plant layout</subject><subject>Plant Leaves - physiology</subject><subject>Plant stress</subject><subject>plant water stress</subject><subject>Plants</subject><subject>Primary production</subject><subject>Productivity</subject><subject>risk</subject><subject>Stress, Physiological</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>tree canopy</subject><subject>trees</subject><subject>Trees - physiology</subject><subject>Water - metabolism</subject><subject>Water - physiology</subject><subject>Water availability</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqN0UFLHDEUB_BQKrpVD_0CEuilHmbNS-JM0puIdgWxPSh4GzKZN7uRmcw2mamup36EfkY_idFVD0KhuQTC7_3J40_IZ2BTSOfALxdTzoAXH8gEZK4zBaL4SCaMcZXlMr_eIp9ivGGM6cOcb5ItoQUvEpqQuyPa9b-dn9PBhDkO3-gQTI0Pf_72TRNphcMtoqeduXOdu39y1oSq99T4mnbOv74uVnUwY-ssjUPAGGnTB7psjR8idUlTuzB-_jzfus4MuEM2GtNG3H25t8nV6cnl8Sw7__H97PjoPLMCoMgsWFsJw61WdcWtsdqYWnGtpGwazjRwrBSXtYTa8lwVwKwyRVMhExYTFdvk6zp3GfpfI8ah7Fy02KavYT_GUsChhLwQkv8HBSYZgCoS_fKO3vRj8GmRpLhUWmuuktpfKxv6GAM25TKk5cOqBFY-NVem5srn5pLde0kcqw7rN_laVQIHa3DrWlz9O6m8-DlbRz4CzSakuw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Quetin, Gregory R.</creator><creator>Anderegg, Leander D. L.</creator><creator>Boving, Indra</creator><creator>Trugman, Anna T.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7884-5332</orcidid><orcidid>https://orcid.org/0000-0002-5144-7254</orcidid><orcidid>https://orcid.org/0000-0002-7903-9711</orcidid><orcidid>https://orcid.org/0000-0002-2176-2819</orcidid></search><sort><creationdate>202412</creationdate><title>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</title><author>Quetin, Gregory R. ; Anderegg, Leander D. L. ; Boving, Indra ; Trugman, Anna T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3117-c1ccb3a2c98db2cac9aad829844ff20912eb824d41dc268710c8a7fbe03ceaad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>canopy</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate prediction</topic><topic>CO2 fertilization</topic><topic>Earth system science</topic><topic>energy</topic><topic>Energy budget</topic><topic>Hydraulics</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>Maximization</topic><topic>Models, Biological</topic><topic>mortality</topic><topic>Moving targets</topic><topic>net carbon gain</topic><topic>Net Primary Productivity</topic><topic>Optimization</topic><topic>Plant layout</topic><topic>Plant Leaves - physiology</topic><topic>Plant stress</topic><topic>plant water stress</topic><topic>Plants</topic><topic>Primary production</topic><topic>Productivity</topic><topic>risk</topic><topic>Stress, Physiological</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>tree canopy</topic><topic>trees</topic><topic>Trees - physiology</topic><topic>Water - metabolism</topic><topic>Water - physiology</topic><topic>Water availability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quetin, Gregory R.</creatorcontrib><creatorcontrib>Anderegg, Leander D. L.</creatorcontrib><creatorcontrib>Boving, Indra</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quetin, Gregory R.</au><au>Anderegg, Leander D. L.</au><au>Boving, Indra</au><au>Trugman, Anna T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>244</volume><issue>5</issue><spage>1788</spage><epage>1800</epage><pages>1788-1800</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39327813</pmid><doi>10.1111/nph.20127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7884-5332</orcidid><orcidid>https://orcid.org/0000-0002-5144-7254</orcidid><orcidid>https://orcid.org/0000-0002-7903-9711</orcidid><orcidid>https://orcid.org/0000-0002-2176-2819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-12, Vol.244 (5), p.1788-1800
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_proquest_miscellaneous_3154167342
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acclimation
Acclimatization
canopy
Carbon
Carbon - metabolism
Carbon cycle
Carbon dioxide
Carbon Dioxide - metabolism
Climate
Climate Change
Climate prediction
CO2 fertilization
Earth system science
energy
Energy budget
Hydraulics
Hydrologic cycle
Hydrological cycle
Leaf area
Leaves
Maximization
Models, Biological
mortality
Moving targets
net carbon gain
Net Primary Productivity
Optimization
Plant layout
Plant Leaves - physiology
Plant stress
plant water stress
Plants
Primary production
Productivity
risk
Stress, Physiological
Surface energy
Surface properties
tree canopy
trees
Trees - physiology
Water - metabolism
Water - physiology
Water availability
title A moving target: trade‐offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20target:%20trade%E2%80%90offs%20between%20maximizing%20carbon%20and%20minimizing%20hydraulic%20stress%20for%20plants%20in%20a%20changing%20climate&rft.jtitle=The%20New%20phytologist&rft.au=Quetin,%20Gregory%20R.&rft.date=2024-12&rft.volume=244&rft.issue=5&rft.spage=1788&rft.epage=1800&rft.pages=1788-1800&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.20127&rft_dat=%3Cproquest_cross%3E3154167342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124899928&rft_id=info:pmid/39327813&rfr_iscdi=true