The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications
Context Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we invest...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2024-11, Vol.30 (11), p.381-381, Article 381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 11 |
container_start_page | 381 |
container_title | Journal of molecular modeling |
container_volume | 30 |
creator | de Souza Santos, Vinicius Lemes Ribeiro, Felipe Augusto Kim, Chang Dong López-Castillo, Alejandro |
description | Context
Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca
2
⁺, Mg
2
⁺, Zn
2
⁺, Mn
2
⁺, and Cu
2
⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu
2
⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn
2
⁺ (202 kJ/mol), Mn
2
⁺ (202 kJ/mol), Mg
2
⁺ (210 kJ/mol), and Ca
2
⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.
Methods
DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds. |
doi_str_mv | 10.1007/s00894-024-06184-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154165237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154165237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-71b4711f12a4f5aaf92ad6161cbc0e8d3420d36b20aae83bb9606d9f36fef1c33</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMottT-ARcScONm9OYxjyxLfULRTbsOmUlip8w0NZkK8--NbVVwIS4ud5HvnJzLQeicwDUByG8CQCF4AjRORgqeiCM0BMGLJAXKjtGQZAQSKjgM0DiEFQAQmmYppadowARnBeN8iBbzpcGbpQtxdG1CZzzWdQiuqlVXvxu87LV3TR_qgJ3FCt8-T3DrtGnwxrvWdUbjsset6VQThVUUuXU4QydWNcGMD3uEFvd38-ljMnt5eJpOZklFC9ElOSl5ToglVHGbKmUFVTqLwauyAlNoxilolpUUlDIFK0uRQaaFZZk1llSMjdDV3jdmedvG9LKtQ2WaRq2N2wbJSMpJvJnl_0CJyCmjKY_o5S905bZ-HQ_ZUdFPCBopuqcq70LwxsqNr1vle0lAflYk9xXJWJHcVSRFFF0crLdla_S35KuQCLA9EOLT-tX4n7__sP0Axz-bHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119652992</pqid></control><display><type>article</type><title>The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>de Souza Santos, Vinicius Lemes ; Ribeiro, Felipe Augusto ; Kim, Chang Dong ; López-Castillo, Alejandro</creator><creatorcontrib>de Souza Santos, Vinicius Lemes ; Ribeiro, Felipe Augusto ; Kim, Chang Dong ; López-Castillo, Alejandro</creatorcontrib><description>Context
Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca
2
⁺, Mg
2
⁺, Zn
2
⁺, Mn
2
⁺, and Cu
2
⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu
2
⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn
2
⁺ (202 kJ/mol), Mn
2
⁺ (202 kJ/mol), Mg
2
⁺ (210 kJ/mol), and Ca
2
⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.
Methods
DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.</description><identifier>ISSN: 1610-2940</identifier><identifier>ISSN: 0948-5023</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-06184-9</identifier><identifier>PMID: 39438344</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bonding agents ; calcium ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Cleavage ; cleavage (chemistry) ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer software ; cytosine ; Data storage ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Ductile-brittle transition ; energy ; geometry ; Hydrolysis ; information storage ; Metals - chemistry ; Models, Molecular ; Molecular Medicine ; Original Paper ; phosphates ; Stability ; Storage systems ; Theoretical and Computational Chemistry ; Thermodynamics ; Thymine</subject><ispartof>Journal of molecular modeling, 2024-11, Vol.30 (11), p.381-381, Article 381</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-71b4711f12a4f5aaf92ad6161cbc0e8d3420d36b20aae83bb9606d9f36fef1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-06184-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-06184-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39438344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza Santos, Vinicius Lemes</creatorcontrib><creatorcontrib>Ribeiro, Felipe Augusto</creatorcontrib><creatorcontrib>Kim, Chang Dong</creatorcontrib><creatorcontrib>López-Castillo, Alejandro</creatorcontrib><title>The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Context
Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca
2
⁺, Mg
2
⁺, Zn
2
⁺, Mn
2
⁺, and Cu
2
⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu
2
⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn
2
⁺ (202 kJ/mol), Mn
2
⁺ (202 kJ/mol), Mg
2
⁺ (210 kJ/mol), and Ca
2
⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.
Methods
DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.</description><subject>Bonding agents</subject><subject>calcium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cleavage</subject><subject>cleavage (chemistry)</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer software</subject><subject>cytosine</subject><subject>Data storage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Ductile-brittle transition</subject><subject>energy</subject><subject>geometry</subject><subject>Hydrolysis</subject><subject>information storage</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>phosphates</subject><subject>Stability</subject><subject>Storage systems</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermodynamics</subject><subject>Thymine</subject><issn>1610-2940</issn><issn>0948-5023</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMottT-ARcScONm9OYxjyxLfULRTbsOmUlip8w0NZkK8--NbVVwIS4ud5HvnJzLQeicwDUByG8CQCF4AjRORgqeiCM0BMGLJAXKjtGQZAQSKjgM0DiEFQAQmmYppadowARnBeN8iBbzpcGbpQtxdG1CZzzWdQiuqlVXvxu87LV3TR_qgJ3FCt8-T3DrtGnwxrvWdUbjsset6VQThVUUuXU4QydWNcGMD3uEFvd38-ljMnt5eJpOZklFC9ElOSl5ToglVHGbKmUFVTqLwauyAlNoxilolpUUlDIFK0uRQaaFZZk1llSMjdDV3jdmedvG9LKtQ2WaRq2N2wbJSMpJvJnl_0CJyCmjKY_o5S905bZ-HQ_ZUdFPCBopuqcq70LwxsqNr1vle0lAflYk9xXJWJHcVSRFFF0crLdla_S35KuQCLA9EOLT-tX4n7__sP0Axz-bHA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>de Souza Santos, Vinicius Lemes</creator><creator>Ribeiro, Felipe Augusto</creator><creator>Kim, Chang Dong</creator><creator>López-Castillo, Alejandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241101</creationdate><title>The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications</title><author>de Souza Santos, Vinicius Lemes ; Ribeiro, Felipe Augusto ; Kim, Chang Dong ; López-Castillo, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-71b4711f12a4f5aaf92ad6161cbc0e8d3420d36b20aae83bb9606d9f36fef1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding agents</topic><topic>calcium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cleavage</topic><topic>cleavage (chemistry)</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer software</topic><topic>cytosine</topic><topic>Data storage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Ductile-brittle transition</topic><topic>energy</topic><topic>geometry</topic><topic>Hydrolysis</topic><topic>information storage</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>phosphates</topic><topic>Stability</topic><topic>Storage systems</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermodynamics</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza Santos, Vinicius Lemes</creatorcontrib><creatorcontrib>Ribeiro, Felipe Augusto</creatorcontrib><creatorcontrib>Kim, Chang Dong</creatorcontrib><creatorcontrib>López-Castillo, Alejandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza Santos, Vinicius Lemes</au><au>Ribeiro, Felipe Augusto</au><au>Kim, Chang Dong</au><au>López-Castillo, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>11</issue><spage>381</spage><epage>381</epage><pages>381-381</pages><artnum>381</artnum><issn>1610-2940</issn><issn>0948-5023</issn><eissn>0948-5023</eissn><abstract>Context
Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca
2
⁺, Mg
2
⁺, Zn
2
⁺, Mn
2
⁺, and Cu
2
⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu
2
⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn
2
⁺ (202 kJ/mol), Mn
2
⁺ (202 kJ/mol), Mg
2
⁺ (210 kJ/mol), and Ca
2
⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.
Methods
DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39438344</pmid><doi>10.1007/s00894-024-06184-9</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2024-11, Vol.30 (11), p.381-381, Article 381 |
issn | 1610-2940 0948-5023 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154165237 |
source | MEDLINE; SpringerLink Journals |
subjects | Bonding agents calcium Characterization and Evaluation of Materials Chemical bonds Chemistry Chemistry and Materials Science Cleavage cleavage (chemistry) Computer Appl. in Life Sciences Computer Applications in Chemistry computer software cytosine Data storage Deoxyribonucleic acid DNA DNA - chemistry Ductile-brittle transition energy geometry Hydrolysis information storage Metals - chemistry Models, Molecular Molecular Medicine Original Paper phosphates Stability Storage systems Theoretical and Computational Chemistry Thermodynamics Thymine |
title | The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phosphodiester%20dissociative%20hydrolysis%20of%20a%20DNA%20model%20promoted%20by%20metal%20dications&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=de%20Souza%20Santos,%20Vinicius%20Lemes&rft.date=2024-11-01&rft.volume=30&rft.issue=11&rft.spage=381&rft.epage=381&rft.pages=381-381&rft.artnum=381&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-06184-9&rft_dat=%3Cproquest_cross%3E3154165237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119652992&rft_id=info:pmid/39438344&rfr_iscdi=true |