Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation
Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion su...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-11, Vol.40 (44), p.23406-23414 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23414 |
---|---|
container_issue | 44 |
container_start_page | 23406 |
container_title | Langmuir |
container_volume | 40 |
creator | Zhu, Jingfang Huang, Haizhou Jia, Haiyang Dong, Meng Tang, Xubing Sun, Wenbin Li, Longyang Sun, Litao |
description | Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability. |
doi_str_mv | 10.1021/acs.langmuir.4c02911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154161748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154161748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78A5EcvXTNNGnTHHVZP0BRWMVjSfPhRrpNTVph_72RXT2KpwnM886QeRA6BTIFksOFVHHayu5tNbowZYrkAmAHTaDISVZUOd9FE8IZzTgr6QE6jPGdECIoE_vogApGy5IXE9Quxt6E5VoH3y994xR-8sGPEc_Wret0cEq2-EqGYFp87cdOG419hxeDdF1rYswWg0mtBxOX2PqA77rBBCuVS7FXmd54_il7H-TgfHeM9qxsoznZ1iP0cj1_nt1m9483d7PL-0zmJRkyLXIDBQewpRBUcm5LJjThFdWl0rkVlZSpkopBpYVlyipKbdNAwznNgdAjdL6Z2wf_MZo41CsXlWnTuUz6W02hYFACZ9U_UBAgKCU0oWyDquBjDMbWfXArGdY1kPpbSZ2U1D9K6q2SFDvbbhibldG_oR8HCSAb4Dv-7sfQpdv8PfML8WeccQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119193303</pqid></control><display><type>article</type><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><source>ACS Publications</source><creator>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</creator><creatorcontrib>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</creatorcontrib><description>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c02911</identifier><identifier>PMID: 39436675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>decline ; evaporation ; friction ; hydrophobicity ; liquids ; microstructure ; porosity ; stainless steel ; stearic acid ; temperature ; zinc oxide</subject><ispartof>Langmuir, 2024-11, Vol.40 (44), p.23406-23414</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</cites><orcidid>0000-0002-5755-5336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c02911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c02911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39436675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Huang, Haizhou</creatorcontrib><creatorcontrib>Jia, Haiyang</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Tang, Xubing</creatorcontrib><creatorcontrib>Sun, Wenbin</creatorcontrib><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</description><subject>decline</subject><subject>evaporation</subject><subject>friction</subject><subject>hydrophobicity</subject><subject>liquids</subject><subject>microstructure</subject><subject>porosity</subject><subject>stainless steel</subject><subject>stearic acid</subject><subject>temperature</subject><subject>zinc oxide</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMoun78A5EcvXTNNGnTHHVZP0BRWMVjSfPhRrpNTVph_72RXT2KpwnM886QeRA6BTIFksOFVHHayu5tNbowZYrkAmAHTaDISVZUOd9FE8IZzTgr6QE6jPGdECIoE_vogApGy5IXE9Quxt6E5VoH3y994xR-8sGPEc_Wret0cEq2-EqGYFp87cdOG419hxeDdF1rYswWg0mtBxOX2PqA77rBBCuVS7FXmd54_il7H-TgfHeM9qxsoznZ1iP0cj1_nt1m9483d7PL-0zmJRkyLXIDBQewpRBUcm5LJjThFdWl0rkVlZSpkopBpYVlyipKbdNAwznNgdAjdL6Z2wf_MZo41CsXlWnTuUz6W02hYFACZ9U_UBAgKCU0oWyDquBjDMbWfXArGdY1kPpbSZ2U1D9K6q2SFDvbbhibldG_oR8HCSAb4Dv-7sfQpdv8PfML8WeccQ</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Zhu, Jingfang</creator><creator>Huang, Haizhou</creator><creator>Jia, Haiyang</creator><creator>Dong, Meng</creator><creator>Tang, Xubing</creator><creator>Sun, Wenbin</creator><creator>Li, Longyang</creator><creator>Sun, Litao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5755-5336</orcidid></search><sort><creationdate>20241105</creationdate><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><author>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>decline</topic><topic>evaporation</topic><topic>friction</topic><topic>hydrophobicity</topic><topic>liquids</topic><topic>microstructure</topic><topic>porosity</topic><topic>stainless steel</topic><topic>stearic acid</topic><topic>temperature</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Huang, Haizhou</creatorcontrib><creatorcontrib>Jia, Haiyang</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Tang, Xubing</creatorcontrib><creatorcontrib>Sun, Wenbin</creatorcontrib><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jingfang</au><au>Huang, Haizhou</au><au>Jia, Haiyang</au><au>Dong, Meng</au><au>Tang, Xubing</au><au>Sun, Wenbin</au><au>Li, Longyang</au><au>Sun, Litao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>40</volume><issue>44</issue><spage>23406</spage><epage>23414</epage><pages>23406-23414</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39436675</pmid><doi>10.1021/acs.langmuir.4c02911</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-5336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-11, Vol.40 (44), p.23406-23414 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154161748 |
source | ACS Publications |
subjects | decline evaporation friction hydrophobicity liquids microstructure porosity stainless steel stearic acid temperature zinc oxide |
title | Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophobic%20Porous%20Cylindrical%20Barrel%20Founded%20on%20Stainless-Steel%20Mesh%20for%20Interfacial%20Water%20Evaporation&rft.jtitle=Langmuir&rft.au=Zhu,%20Jingfang&rft.date=2024-11-05&rft.volume=40&rft.issue=44&rft.spage=23406&rft.epage=23414&rft.pages=23406-23414&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c02911&rft_dat=%3Cproquest_cross%3E3154161748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119193303&rft_id=info:pmid/39436675&rfr_iscdi=true |