Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation

Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-11, Vol.40 (44), p.23406-23414
Hauptverfasser: Zhu, Jingfang, Huang, Haizhou, Jia, Haiyang, Dong, Meng, Tang, Xubing, Sun, Wenbin, Li, Longyang, Sun, Litao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23414
container_issue 44
container_start_page 23406
container_title Langmuir
container_volume 40
creator Zhu, Jingfang
Huang, Haizhou
Jia, Haiyang
Dong, Meng
Tang, Xubing
Sun, Wenbin
Li, Longyang
Sun, Litao
description Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.
doi_str_mv 10.1021/acs.langmuir.4c02911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154161748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154161748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78A5EcvXTNNGnTHHVZP0BRWMVjSfPhRrpNTVph_72RXT2KpwnM886QeRA6BTIFksOFVHHayu5tNbowZYrkAmAHTaDISVZUOd9FE8IZzTgr6QE6jPGdECIoE_vogApGy5IXE9Quxt6E5VoH3y994xR-8sGPEc_Wret0cEq2-EqGYFp87cdOG419hxeDdF1rYswWg0mtBxOX2PqA77rBBCuVS7FXmd54_il7H-TgfHeM9qxsoznZ1iP0cj1_nt1m9483d7PL-0zmJRkyLXIDBQewpRBUcm5LJjThFdWl0rkVlZSpkopBpYVlyipKbdNAwznNgdAjdL6Z2wf_MZo41CsXlWnTuUz6W02hYFACZ9U_UBAgKCU0oWyDquBjDMbWfXArGdY1kPpbSZ2U1D9K6q2SFDvbbhibldG_oR8HCSAb4Dv-7sfQpdv8PfML8WeccQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119193303</pqid></control><display><type>article</type><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><source>ACS Publications</source><creator>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</creator><creatorcontrib>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</creatorcontrib><description>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c02911</identifier><identifier>PMID: 39436675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>decline ; evaporation ; friction ; hydrophobicity ; liquids ; microstructure ; porosity ; stainless steel ; stearic acid ; temperature ; zinc oxide</subject><ispartof>Langmuir, 2024-11, Vol.40 (44), p.23406-23414</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</cites><orcidid>0000-0002-5755-5336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c02911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c02911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39436675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Huang, Haizhou</creatorcontrib><creatorcontrib>Jia, Haiyang</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Tang, Xubing</creatorcontrib><creatorcontrib>Sun, Wenbin</creatorcontrib><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</description><subject>decline</subject><subject>evaporation</subject><subject>friction</subject><subject>hydrophobicity</subject><subject>liquids</subject><subject>microstructure</subject><subject>porosity</subject><subject>stainless steel</subject><subject>stearic acid</subject><subject>temperature</subject><subject>zinc oxide</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMoun78A5EcvXTNNGnTHHVZP0BRWMVjSfPhRrpNTVph_72RXT2KpwnM886QeRA6BTIFksOFVHHayu5tNbowZYrkAmAHTaDISVZUOd9FE8IZzTgr6QE6jPGdECIoE_vogApGy5IXE9Quxt6E5VoH3y994xR-8sGPEc_Wret0cEq2-EqGYFp87cdOG419hxeDdF1rYswWg0mtBxOX2PqA77rBBCuVS7FXmd54_il7H-TgfHeM9qxsoznZ1iP0cj1_nt1m9483d7PL-0zmJRkyLXIDBQewpRBUcm5LJjThFdWl0rkVlZSpkopBpYVlyipKbdNAwznNgdAjdL6Z2wf_MZo41CsXlWnTuUz6W02hYFACZ9U_UBAgKCU0oWyDquBjDMbWfXArGdY1kPpbSZ2U1D9K6q2SFDvbbhibldG_oR8HCSAb4Dv-7sfQpdv8PfML8WeccQ</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Zhu, Jingfang</creator><creator>Huang, Haizhou</creator><creator>Jia, Haiyang</creator><creator>Dong, Meng</creator><creator>Tang, Xubing</creator><creator>Sun, Wenbin</creator><creator>Li, Longyang</creator><creator>Sun, Litao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5755-5336</orcidid></search><sort><creationdate>20241105</creationdate><title>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</title><author>Zhu, Jingfang ; Huang, Haizhou ; Jia, Haiyang ; Dong, Meng ; Tang, Xubing ; Sun, Wenbin ; Li, Longyang ; Sun, Litao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-d92e15711f6993a77f649d0783d6cd2f98aacd208418d9f4cfc33fbb1b7732103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>decline</topic><topic>evaporation</topic><topic>friction</topic><topic>hydrophobicity</topic><topic>liquids</topic><topic>microstructure</topic><topic>porosity</topic><topic>stainless steel</topic><topic>stearic acid</topic><topic>temperature</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jingfang</creatorcontrib><creatorcontrib>Huang, Haizhou</creatorcontrib><creatorcontrib>Jia, Haiyang</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Tang, Xubing</creatorcontrib><creatorcontrib>Sun, Wenbin</creatorcontrib><creatorcontrib>Li, Longyang</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jingfang</au><au>Huang, Haizhou</au><au>Jia, Haiyang</au><au>Dong, Meng</au><au>Tang, Xubing</au><au>Sun, Wenbin</au><au>Li, Longyang</au><au>Sun, Litao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>40</volume><issue>44</issue><spage>23406</spage><epage>23414</epage><pages>23406-23414</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39436675</pmid><doi>10.1021/acs.langmuir.4c02911</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-5336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-11, Vol.40 (44), p.23406-23414
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3154161748
source ACS Publications
subjects decline
evaporation
friction
hydrophobicity
liquids
microstructure
porosity
stainless steel
stearic acid
temperature
zinc oxide
title Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophobic%20Porous%20Cylindrical%20Barrel%20Founded%20on%20Stainless-Steel%20Mesh%20for%20Interfacial%20Water%20Evaporation&rft.jtitle=Langmuir&rft.au=Zhu,%20Jingfang&rft.date=2024-11-05&rft.volume=40&rft.issue=44&rft.spage=23406&rft.epage=23414&rft.pages=23406-23414&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c02911&rft_dat=%3Cproquest_cross%3E3154161748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119193303&rft_id=info:pmid/39436675&rfr_iscdi=true