Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations
For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic pro...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-11, Vol.16 (44), p.60458-60471 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60471 |
---|---|
container_issue | 44 |
container_start_page | 60458 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Bu, Zhenyu Xue, Yun Zhao, Xiaoqin Liu, Guang An, Yulong Zhou, Huidi Chen, Jianmin |
description | For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials. |
doi_str_mv | 10.1021/acsami.4c10774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154160950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120058467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-ed3bc0822a9cd007f7133370b72925c588eb59d419bee8ab893b033a2fec51703</originalsourceid><addsrcrecordid>eNqNkUtKA0EQQAdRMEa3rnspQmJ_5-MuxEQDCRHU9dDTU2M6TLpjd09QcOEVPIv38BCexIkR166qFo8HVS-KTgnuE0zJhVRernSfK4KThO9FHZJx3kupoPt_O-eH0ZH3S4xjRrHoRK-j53VtnTaPKCwADd2LD7JGd8E1KjQOkDQlGtWggrNGK3Tr7Bpc0OCRrdDnx9fb-6Cmc3aJZlIttAE0BenM1nfl9KbFxs2PZyYDON2qJ8bYjQzaGn8cHVSy9nDyO7vRw3h0P7zpTefXk-Fg2pMkjUMPSlYonFIqM1VinFQJYYwluEhoRoUSaQqFyEpOsgIglUWasQIzJmkFSpAEs250tvOunX1qwId8pb2CupYGbONzRgQnMc7Ef1CKsUh5nLTo-Q5tH58vbeNMe0NOcL6tke9q5L812Df0pICr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120058467</pqid></control><display><type>article</type><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><source>ACS Publications</source><creator>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</creator><creatorcontrib>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</creatorcontrib><description>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c10774</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>aluminum oxide ; crystal structure ; density functional theory ; electric field ; electrical conductivity ; energy ; Functional Inorganic Materials and Devices ; oxygen ; semiconductors ; transmission electron microscopy</subject><ispartof>ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60458-60471</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1146-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c10774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c10774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Bu, Zhenyu</creatorcontrib><creatorcontrib>Xue, Yun</creatorcontrib><creatorcontrib>Zhao, Xiaoqin</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>An, Yulong</creatorcontrib><creatorcontrib>Zhou, Huidi</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</description><subject>aluminum oxide</subject><subject>crystal structure</subject><subject>density functional theory</subject><subject>electric field</subject><subject>electrical conductivity</subject><subject>energy</subject><subject>Functional Inorganic Materials and Devices</subject><subject>oxygen</subject><subject>semiconductors</subject><subject>transmission electron microscopy</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkUtKA0EQQAdRMEa3rnspQmJ_5-MuxEQDCRHU9dDTU2M6TLpjd09QcOEVPIv38BCexIkR166qFo8HVS-KTgnuE0zJhVRernSfK4KThO9FHZJx3kupoPt_O-eH0ZH3S4xjRrHoRK-j53VtnTaPKCwADd2LD7JGd8E1KjQOkDQlGtWggrNGK3Tr7Bpc0OCRrdDnx9fb-6Cmc3aJZlIttAE0BenM1nfl9KbFxs2PZyYDON2qJ8bYjQzaGn8cHVSy9nDyO7vRw3h0P7zpTefXk-Fg2pMkjUMPSlYonFIqM1VinFQJYYwluEhoRoUSaQqFyEpOsgIglUWasQIzJmkFSpAEs250tvOunX1qwId8pb2CupYGbONzRgQnMc7Ef1CKsUh5nLTo-Q5tH58vbeNMe0NOcL6tke9q5L812Df0pICr</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Bu, Zhenyu</creator><creator>Xue, Yun</creator><creator>Zhao, Xiaoqin</creator><creator>Liu, Guang</creator><creator>An, Yulong</creator><creator>Zhou, Huidi</creator><creator>Chen, Jianmin</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1146-675X</orcidid></search><sort><creationdate>20241106</creationdate><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><author>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-ed3bc0822a9cd007f7133370b72925c588eb59d419bee8ab893b033a2fec51703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aluminum oxide</topic><topic>crystal structure</topic><topic>density functional theory</topic><topic>electric field</topic><topic>electrical conductivity</topic><topic>energy</topic><topic>Functional Inorganic Materials and Devices</topic><topic>oxygen</topic><topic>semiconductors</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Zhenyu</creatorcontrib><creatorcontrib>Xue, Yun</creatorcontrib><creatorcontrib>Zhao, Xiaoqin</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>An, Yulong</creatorcontrib><creatorcontrib>Zhou, Huidi</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Zhenyu</au><au>Xue, Yun</au><au>Zhao, Xiaoqin</au><au>Liu, Guang</au><au>An, Yulong</au><au>Zhou, Huidi</au><au>Chen, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>16</volume><issue>44</issue><spage>60458</spage><epage>60471</epage><pages>60458-60471</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c10774</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1146-675X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60458-60471 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154160950 |
source | ACS Publications |
subjects | aluminum oxide crystal structure density functional theory electric field electrical conductivity energy Functional Inorganic Materials and Devices oxygen semiconductors transmission electron microscopy |
title | Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Crystal%20Structure%20and%20Electronic%20Properties%20of%20%CE%B3%E2%80%91Al2O3:%20Machine%20Learning%20Drives%20Future%20Material%20Innovations&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bu,%20Zhenyu&rft.date=2024-11-06&rft.volume=16&rft.issue=44&rft.spage=60458&rft.epage=60471&rft.pages=60458-60471&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c10774&rft_dat=%3Cproquest_acs_j%3E3120058467%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120058467&rft_id=info:pmid/&rfr_iscdi=true |