Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations

For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-11, Vol.16 (44), p.60458-60471
Hauptverfasser: Bu, Zhenyu, Xue, Yun, Zhao, Xiaoqin, Liu, Guang, An, Yulong, Zhou, Huidi, Chen, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60471
container_issue 44
container_start_page 60458
container_title ACS applied materials & interfaces
container_volume 16
creator Bu, Zhenyu
Xue, Yun
Zhao, Xiaoqin
Liu, Guang
An, Yulong
Zhou, Huidi
Chen, Jianmin
description For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.
doi_str_mv 10.1021/acsami.4c10774
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154160950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120058467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-ed3bc0822a9cd007f7133370b72925c588eb59d419bee8ab893b033a2fec51703</originalsourceid><addsrcrecordid>eNqNkUtKA0EQQAdRMEa3rnspQmJ_5-MuxEQDCRHU9dDTU2M6TLpjd09QcOEVPIv38BCexIkR166qFo8HVS-KTgnuE0zJhVRernSfK4KThO9FHZJx3kupoPt_O-eH0ZH3S4xjRrHoRK-j53VtnTaPKCwADd2LD7JGd8E1KjQOkDQlGtWggrNGK3Tr7Bpc0OCRrdDnx9fb-6Cmc3aJZlIttAE0BenM1nfl9KbFxs2PZyYDON2qJ8bYjQzaGn8cHVSy9nDyO7vRw3h0P7zpTefXk-Fg2pMkjUMPSlYonFIqM1VinFQJYYwluEhoRoUSaQqFyEpOsgIglUWasQIzJmkFSpAEs250tvOunX1qwId8pb2CupYGbONzRgQnMc7Ef1CKsUh5nLTo-Q5tH58vbeNMe0NOcL6tke9q5L812Df0pICr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120058467</pqid></control><display><type>article</type><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><source>ACS Publications</source><creator>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</creator><creatorcontrib>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</creatorcontrib><description>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c10774</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>aluminum oxide ; crystal structure ; density functional theory ; electric field ; electrical conductivity ; energy ; Functional Inorganic Materials and Devices ; oxygen ; semiconductors ; transmission electron microscopy</subject><ispartof>ACS applied materials &amp; interfaces, 2024-11, Vol.16 (44), p.60458-60471</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1146-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c10774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c10774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Bu, Zhenyu</creatorcontrib><creatorcontrib>Xue, Yun</creatorcontrib><creatorcontrib>Zhao, Xiaoqin</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>An, Yulong</creatorcontrib><creatorcontrib>Zhou, Huidi</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</description><subject>aluminum oxide</subject><subject>crystal structure</subject><subject>density functional theory</subject><subject>electric field</subject><subject>electrical conductivity</subject><subject>energy</subject><subject>Functional Inorganic Materials and Devices</subject><subject>oxygen</subject><subject>semiconductors</subject><subject>transmission electron microscopy</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkUtKA0EQQAdRMEa3rnspQmJ_5-MuxEQDCRHU9dDTU2M6TLpjd09QcOEVPIv38BCexIkR166qFo8HVS-KTgnuE0zJhVRernSfK4KThO9FHZJx3kupoPt_O-eH0ZH3S4xjRrHoRK-j53VtnTaPKCwADd2LD7JGd8E1KjQOkDQlGtWggrNGK3Tr7Bpc0OCRrdDnx9fb-6Cmc3aJZlIttAE0BenM1nfl9KbFxs2PZyYDON2qJ8bYjQzaGn8cHVSy9nDyO7vRw3h0P7zpTefXk-Fg2pMkjUMPSlYonFIqM1VinFQJYYwluEhoRoUSaQqFyEpOsgIglUWasQIzJmkFSpAEs250tvOunX1qwId8pb2CupYGbONzRgQnMc7Ef1CKsUh5nLTo-Q5tH58vbeNMe0NOcL6tke9q5L812Df0pICr</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Bu, Zhenyu</creator><creator>Xue, Yun</creator><creator>Zhao, Xiaoqin</creator><creator>Liu, Guang</creator><creator>An, Yulong</creator><creator>Zhou, Huidi</creator><creator>Chen, Jianmin</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1146-675X</orcidid></search><sort><creationdate>20241106</creationdate><title>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</title><author>Bu, Zhenyu ; Xue, Yun ; Zhao, Xiaoqin ; Liu, Guang ; An, Yulong ; Zhou, Huidi ; Chen, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-ed3bc0822a9cd007f7133370b72925c588eb59d419bee8ab893b033a2fec51703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aluminum oxide</topic><topic>crystal structure</topic><topic>density functional theory</topic><topic>electric field</topic><topic>electrical conductivity</topic><topic>energy</topic><topic>Functional Inorganic Materials and Devices</topic><topic>oxygen</topic><topic>semiconductors</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Zhenyu</creatorcontrib><creatorcontrib>Xue, Yun</creatorcontrib><creatorcontrib>Zhao, Xiaoqin</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>An, Yulong</creatorcontrib><creatorcontrib>Zhou, Huidi</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Zhenyu</au><au>Xue, Yun</au><au>Zhao, Xiaoqin</au><au>Liu, Guang</au><au>An, Yulong</au><au>Zhou, Huidi</au><au>Chen, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>16</volume><issue>44</issue><spage>60458</spage><epage>60471</epage><pages>60458-60471</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>For decades, researchers have struggled to determine the precise crystal structure of γ-Al2O3 due to its atomic-level disorder and the challenges associated with obtaining high-purity, high-crystallinity γ-Al2O3 in laboratory settings. This study investigates the crystal structure and electronic properties of γ-Al2O3 coatings under the influence of an external electric field, integrating machine learning with density functional theory (DFT). A potential 160-atom supercell structure was identified from over 600,000 γ-Al2O3 configurations and confirmed through high-resolution transmission electron microscopy and selected area electron diffraction. The findings indicate that γ-Al2O3 deviates from the conventional spinel structure, suggesting that octahedral vacancies can reduce the system’s energy. Under an external electric field, the material’s band structure and density of states (DOS) undergo significant changes: the bandgap narrows from 3.996 to 0 eV, resulting in metallic behavior, while the projected density of states (PDOS) exhibits peak broadening and splitting of oxygen atom PDOS below the Fermi level. These alterations elucidate the variations in the electrical conductivity of alumina coatings under an electric field. These findings clarify the mechanisms of γ-Al2O3’s electronic property modulation and offer insights into its covalent and ionic mixed bonding as a wide-bandgap semiconductor. This discovery is essential for understanding dielectric breakdown in insulating materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c10774</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1146-675X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60458-60471
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3154160950
source ACS Publications
subjects aluminum oxide
crystal structure
density functional theory
electric field
electrical conductivity
energy
Functional Inorganic Materials and Devices
oxygen
semiconductors
transmission electron microscopy
title Exploring the Crystal Structure and Electronic Properties of γ‑Al2O3: Machine Learning Drives Future Material Innovations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Crystal%20Structure%20and%20Electronic%20Properties%20of%20%CE%B3%E2%80%91Al2O3:%20Machine%20Learning%20Drives%20Future%20Material%20Innovations&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bu,%20Zhenyu&rft.date=2024-11-06&rft.volume=16&rft.issue=44&rft.spage=60458&rft.epage=60471&rft.pages=60458-60471&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c10774&rft_dat=%3Cproquest_acs_j%3E3120058467%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120058467&rft_id=info:pmid/&rfr_iscdi=true