Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA

In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant 2024-11, Vol.17 (11), p.1719-1732
Hauptverfasser: Hajný, Jakub, Trávníčková, Tereza, Špundová, Martina, Roenspies, Michelle, Rony, R.M. Imtiaz Karim, Sacharowski, Sebastian, Krzyszton, Michal, Zalabák, David, Hardtke, Christian S., Pečinka, Aleš, Puchta, Holger, Swiezewski, Szymon, van Norman, Jaimie M., Novák, Ondřej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1732
container_issue 11
container_start_page 1719
container_title Molecular plant
container_volume 17
creator Hajný, Jakub
Trávníčková, Tereza
Špundová, Martina
Roenspies, Michelle
Rony, R.M. Imtiaz Karim
Sacharowski, Sebastian
Krzyszton, Michal
Zalabák, David
Hardtke, Christian S.
Pečinka, Aleš
Puchta, Holger
Swiezewski, Szymon
van Norman, Jaimie M.
Novák, Ondřej
description In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology. This study shows that the CARMA–CANAR module acts as a novel osmoregulatory system controlling cell size in the root stele in response to external osmolality. CANAR activity regulates the shoot-to-root phloem transport of sugars, which influences internal pressure via cellular water uptake and thus cell size.
doi_str_mv 10.1016/j.molp.2024.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154159553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1674205224003009</els_id><sourcerecordid>3112116630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8a6ddb2cf9aed8f2131b3d916e01ec9405b29f2cd0a6b969a582ac5d2d92528f3</originalsourceid><addsrcrecordid>eNqNkM1O3jAQRa2KqlDKC3RReckmqceOnVhigxD9kaBIUNaWY0-QPyVxsBMk-vQk-miXFau5i3OvRoeQz8BKYKC-7soh9lPJGa9KpksG8I4cQS15oRtVH6xZ1VXBmeSH5GPOO8YUa5T4QA6FFrKqoT4i13eLSzFjkTBPcczhCWnMQ0z4sPR2DnGksaNTb8eZOux7msMfpO0ztbSP4wMd41i46MMab3-dfyLvO9tnPHm9x-T-2-Xvix_F1c33nxfnV4UTUM1FY5X3LXedtuibjoOAVngNChmg0xWTLdcdd55Z1WqlrWy4ddJzr7nkTSeOyel-d0rxccE8myHk7T07YlyyESArkFpK8QYUOIBSgq0o36ObkZywM1MKg03PBpjZjJud2Yybzbhh2qzG19KX1_2lHdD_q_xVvAJnewBXIU8Bk8ku4OjQh4RuNj6G_-2_ANX6kcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112116630</pqid></control><display><type>article</type><title>Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Hajný, Jakub ; Trávníčková, Tereza ; Špundová, Martina ; Roenspies, Michelle ; Rony, R.M. Imtiaz Karim ; Sacharowski, Sebastian ; Krzyszton, Michal ; Zalabák, David ; Hardtke, Christian S. ; Pečinka, Aleš ; Puchta, Holger ; Swiezewski, Szymon ; van Norman, Jaimie M. ; Novák, Ondřej</creator><creatorcontrib>Hajný, Jakub ; Trávníčková, Tereza ; Špundová, Martina ; Roenspies, Michelle ; Rony, R.M. Imtiaz Karim ; Sacharowski, Sebastian ; Krzyszton, Michal ; Zalabák, David ; Hardtke, Christian S. ; Pečinka, Aleš ; Puchta, Holger ; Swiezewski, Szymon ; van Norman, Jaimie M. ; Novák, Ondřej</creatorcontrib><description>In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology. This study shows that the CARMA–CANAR module acts as a novel osmoregulatory system controlling cell size in the root stele in response to external osmolality. CANAR activity regulates the shoot-to-root phloem transport of sugars, which influences internal pressure via cellular water uptake and thus cell size.</description><identifier>ISSN: 1674-2052</identifier><identifier>ISSN: 1752-9867</identifier><identifier>EISSN: 1752-9867</identifier><identifier>DOI: 10.1016/j.molp.2024.09.011</identifier><identifier>PMID: 39354717</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; auxin ; Cell Size ; energy ; Gene Expression Regulation, Plant ; lncRNA ; microscopy ; morphogenesis ; non-coding RNA ; osmolality ; osmoregulation ; Osmoregulation - genetics ; phloem ; Phloem - cytology ; Phloem - genetics ; Phloem - metabolism ; Plant Cells - metabolism ; plant growth ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Sucrose - metabolism ; sugar transport ; sugars ; turgor ; water uptake</subject><ispartof>Molecular plant, 2024-11, Vol.17 (11), p.1719-1732</ispartof><rights>2024 The Author</rights><rights>Copyright © 2024 The Author. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-8a6ddb2cf9aed8f2131b3d916e01ec9405b29f2cd0a6b969a582ac5d2d92528f3</cites><orcidid>0000-0003-2140-7195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39354717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajný, Jakub</creatorcontrib><creatorcontrib>Trávníčková, Tereza</creatorcontrib><creatorcontrib>Špundová, Martina</creatorcontrib><creatorcontrib>Roenspies, Michelle</creatorcontrib><creatorcontrib>Rony, R.M. Imtiaz Karim</creatorcontrib><creatorcontrib>Sacharowski, Sebastian</creatorcontrib><creatorcontrib>Krzyszton, Michal</creatorcontrib><creatorcontrib>Zalabák, David</creatorcontrib><creatorcontrib>Hardtke, Christian S.</creatorcontrib><creatorcontrib>Pečinka, Aleš</creatorcontrib><creatorcontrib>Puchta, Holger</creatorcontrib><creatorcontrib>Swiezewski, Szymon</creatorcontrib><creatorcontrib>van Norman, Jaimie M.</creatorcontrib><creatorcontrib>Novák, Ondřej</creatorcontrib><title>Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA</title><title>Molecular plant</title><addtitle>Mol Plant</addtitle><description>In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology. This study shows that the CARMA–CANAR module acts as a novel osmoregulatory system controlling cell size in the root stele in response to external osmolality. CANAR activity regulates the shoot-to-root phloem transport of sugars, which influences internal pressure via cellular water uptake and thus cell size.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>auxin</subject><subject>Cell Size</subject><subject>energy</subject><subject>Gene Expression Regulation, Plant</subject><subject>lncRNA</subject><subject>microscopy</subject><subject>morphogenesis</subject><subject>non-coding RNA</subject><subject>osmolality</subject><subject>osmoregulation</subject><subject>Osmoregulation - genetics</subject><subject>phloem</subject><subject>Phloem - cytology</subject><subject>Phloem - genetics</subject><subject>Phloem - metabolism</subject><subject>Plant Cells - metabolism</subject><subject>plant growth</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Sucrose - metabolism</subject><subject>sugar transport</subject><subject>sugars</subject><subject>turgor</subject><subject>water uptake</subject><issn>1674-2052</issn><issn>1752-9867</issn><issn>1752-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1O3jAQRa2KqlDKC3RReckmqceOnVhigxD9kaBIUNaWY0-QPyVxsBMk-vQk-miXFau5i3OvRoeQz8BKYKC-7soh9lPJGa9KpksG8I4cQS15oRtVH6xZ1VXBmeSH5GPOO8YUa5T4QA6FFrKqoT4i13eLSzFjkTBPcczhCWnMQ0z4sPR2DnGksaNTb8eZOux7msMfpO0ztbSP4wMd41i46MMab3-dfyLvO9tnPHm9x-T-2-Xvix_F1c33nxfnV4UTUM1FY5X3LXedtuibjoOAVngNChmg0xWTLdcdd55Z1WqlrWy4ddJzr7nkTSeOyel-d0rxccE8myHk7T07YlyyESArkFpK8QYUOIBSgq0o36ObkZywM1MKg03PBpjZjJud2Yybzbhh2qzG19KX1_2lHdD_q_xVvAJnewBXIU8Bk8ku4OjQh4RuNj6G_-2_ANX6kcQ</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Hajný, Jakub</creator><creator>Trávníčková, Tereza</creator><creator>Špundová, Martina</creator><creator>Roenspies, Michelle</creator><creator>Rony, R.M. Imtiaz Karim</creator><creator>Sacharowski, Sebastian</creator><creator>Krzyszton, Michal</creator><creator>Zalabák, David</creator><creator>Hardtke, Christian S.</creator><creator>Pečinka, Aleš</creator><creator>Puchta, Holger</creator><creator>Swiezewski, Szymon</creator><creator>van Norman, Jaimie M.</creator><creator>Novák, Ondřej</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2140-7195</orcidid></search><sort><creationdate>20241104</creationdate><title>Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA</title><author>Hajný, Jakub ; Trávníčková, Tereza ; Špundová, Martina ; Roenspies, Michelle ; Rony, R.M. Imtiaz Karim ; Sacharowski, Sebastian ; Krzyszton, Michal ; Zalabák, David ; Hardtke, Christian S. ; Pečinka, Aleš ; Puchta, Holger ; Swiezewski, Szymon ; van Norman, Jaimie M. ; Novák, Ondřej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8a6ddb2cf9aed8f2131b3d916e01ec9405b29f2cd0a6b969a582ac5d2d92528f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>auxin</topic><topic>Cell Size</topic><topic>energy</topic><topic>Gene Expression Regulation, Plant</topic><topic>lncRNA</topic><topic>microscopy</topic><topic>morphogenesis</topic><topic>non-coding RNA</topic><topic>osmolality</topic><topic>osmoregulation</topic><topic>Osmoregulation - genetics</topic><topic>phloem</topic><topic>Phloem - cytology</topic><topic>Phloem - genetics</topic><topic>Phloem - metabolism</topic><topic>Plant Cells - metabolism</topic><topic>plant growth</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Sucrose - metabolism</topic><topic>sugar transport</topic><topic>sugars</topic><topic>turgor</topic><topic>water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajný, Jakub</creatorcontrib><creatorcontrib>Trávníčková, Tereza</creatorcontrib><creatorcontrib>Špundová, Martina</creatorcontrib><creatorcontrib>Roenspies, Michelle</creatorcontrib><creatorcontrib>Rony, R.M. Imtiaz Karim</creatorcontrib><creatorcontrib>Sacharowski, Sebastian</creatorcontrib><creatorcontrib>Krzyszton, Michal</creatorcontrib><creatorcontrib>Zalabák, David</creatorcontrib><creatorcontrib>Hardtke, Christian S.</creatorcontrib><creatorcontrib>Pečinka, Aleš</creatorcontrib><creatorcontrib>Puchta, Holger</creatorcontrib><creatorcontrib>Swiezewski, Szymon</creatorcontrib><creatorcontrib>van Norman, Jaimie M.</creatorcontrib><creatorcontrib>Novák, Ondřej</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajný, Jakub</au><au>Trávníčková, Tereza</au><au>Špundová, Martina</au><au>Roenspies, Michelle</au><au>Rony, R.M. Imtiaz Karim</au><au>Sacharowski, Sebastian</au><au>Krzyszton, Michal</au><au>Zalabák, David</au><au>Hardtke, Christian S.</au><au>Pečinka, Aleš</au><au>Puchta, Holger</au><au>Swiezewski, Szymon</au><au>van Norman, Jaimie M.</au><au>Novák, Ondřej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA</atitle><jtitle>Molecular plant</jtitle><addtitle>Mol Plant</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>1719</spage><epage>1732</epage><pages>1719-1732</pages><issn>1674-2052</issn><issn>1752-9867</issn><eissn>1752-9867</eissn><abstract>In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology. This study shows that the CARMA–CANAR module acts as a novel osmoregulatory system controlling cell size in the root stele in response to external osmolality. CANAR activity regulates the shoot-to-root phloem transport of sugars, which influences internal pressure via cellular water uptake and thus cell size.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>39354717</pmid><doi>10.1016/j.molp.2024.09.011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2140-7195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2052
ispartof Molecular plant, 2024-11, Vol.17 (11), p.1719-1732
issn 1674-2052
1752-9867
1752-9867
language eng
recordid cdi_proquest_miscellaneous_3154159553
source MEDLINE; Alma/SFX Local Collection
subjects Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
auxin
Cell Size
energy
Gene Expression Regulation, Plant
lncRNA
microscopy
morphogenesis
non-coding RNA
osmolality
osmoregulation
Osmoregulation - genetics
phloem
Phloem - cytology
Phloem - genetics
Phloem - metabolism
Plant Cells - metabolism
plant growth
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Sucrose - metabolism
sugar transport
sugars
turgor
water uptake
title Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sucrose-responsive%20osmoregulation%20of%20plant%20cell%20size%20by%20a%20long%20non-coding%20RNA&rft.jtitle=Molecular%20plant&rft.au=Hajn%C3%BD,%20Jakub&rft.date=2024-11-04&rft.volume=17&rft.issue=11&rft.spage=1719&rft.epage=1732&rft.pages=1719-1732&rft.issn=1674-2052&rft.eissn=1752-9867&rft_id=info:doi/10.1016/j.molp.2024.09.011&rft_dat=%3Cproquest_cross%3E3112116630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112116630&rft_id=info:pmid/39354717&rft_els_id=S1674205224003009&rfr_iscdi=true