Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation

The harmful impact of organic pollutants on aquatic ecosystems underscores the pressing need for effective remediation. While activating peroxymonosulfate (PMS) with Fe catalyst offers a promising approach for eliminating these pollutants, its widespread use is hindered by the sluggish regeneration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2024-11, Vol.367, p.143380, Article 143380
Hauptverfasser: Ying, Yunzhan, Liang, Shikun, Zhang, Fayang, Xu, Xiangwei, Qian, Chenbo, Jiang, Long, Zhou, Jing, Wan, Yulong, Wang, Lie, Yao, Yuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 143380
container_title Chemosphere (Oxford)
container_volume 367
creator Ying, Yunzhan
Liang, Shikun
Zhang, Fayang
Xu, Xiangwei
Qian, Chenbo
Jiang, Long
Zhou, Jing
Wan, Yulong
Wang, Lie
Yao, Yuyuan
description The harmful impact of organic pollutants on aquatic ecosystems underscores the pressing need for effective remediation. While activating peroxymonosulfate (PMS) with Fe catalyst offers a promising approach for eliminating these pollutants, its widespread use is hindered by the sluggish regeneration of Fe2+ from Fe3+. Here, this study demonstrates for the first time that combining an Fe catalyst with Mo2C (Fe-Mo2C) enhances the Fe³⁺/Fe2⁺ cycle, thereby improving PMS activation. The Fe-Mo2C/PMS system achieved near-complete degradation of carbamazepine (CBZ) within only 8 min, with an impressive observed rate constant (kobs) of up to 0.624 min−1, about 15 times greater than that of Fe-C catalyst. It also exhibits the capability to degrade a broad range of common antibiotics, phenols, and dye-like organic compounds. Through electron paramagnetic resonance (EPR) analysis and quenching experiments, it was verified that hydroxyl radicals (·OH), sulfate radicals (SO4·-), singlet oxygen (1O2), and superoxide radicals (·O2−) species during the reaction, with the former three serving as the primary active species. These findings offer a hopeful avenue for the systematic development and enhancement of catalysts specifically designed to efficiently remediate organic pollutants in wastewater. [Display omitted] •A novel Fe-Mo2C catalyst was synthesized using a coprecipitation and calcination method.•The introduction of Mo2C accelerated the Fe3+/Fe2+ cycle for peroxymonosulfate activation.•The catalytic system achieved a notable rate constant of 0.624 min−1 for carbamazepine removal.•SO4·-, ·OH, 1O2 and ·O2− were identified as the primary active species.
doi_str_mv 10.1016/j.chemosphere.2024.143380
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154156573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653524022781</els_id><sourcerecordid>3108389023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1763-9e40d428ad7ed8627cee798da8c13d7d8e8d502799d03a19973d039c4b03c5af3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKvfId4E2TZ_NpvkWIpVoeJFjxJiMsWU3U1NUrHf3q314LGnGZj3HvN-CF1TMqGENtP1xH1AF_PmAxJMGGH1hNacK3KCRlRJXVGm1SkaEVKLqhFcnKOLnNeEDGahR-ht5hy0kGwBjxfAb6cLYLfY7VwLOPT4KbJ59W7z7xU7W2y7ywWXiDcpdrEA3kCK37su9jFv29WQg60r4cuWEPtLdLaybYarvzlGr4u7l_lDtXy-f5zPlpWjsuGVhpr4minrJXjVMOkApFbeKke5l16B8oIwqbUn3FKtJR8W7ep3wp2wKz5GN4fc4anPLeRiupCHXq3tIW6z4VTUVDRC8iOkRHGlCdtL9UHqUsw5wcpsUuhs2hlKzJ6-WZt_9M2evjnQH7zzgxeG2l8BkskuQO_AhwSuGB_DESk_lkeS9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108389023</pqid></control><display><type>article</type><title>Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation</title><source>Elsevier ScienceDirect Journals</source><creator>Ying, Yunzhan ; Liang, Shikun ; Zhang, Fayang ; Xu, Xiangwei ; Qian, Chenbo ; Jiang, Long ; Zhou, Jing ; Wan, Yulong ; Wang, Lie ; Yao, Yuyuan</creator><creatorcontrib>Ying, Yunzhan ; Liang, Shikun ; Zhang, Fayang ; Xu, Xiangwei ; Qian, Chenbo ; Jiang, Long ; Zhou, Jing ; Wan, Yulong ; Wang, Lie ; Yao, Yuyuan</creatorcontrib><description>The harmful impact of organic pollutants on aquatic ecosystems underscores the pressing need for effective remediation. While activating peroxymonosulfate (PMS) with Fe catalyst offers a promising approach for eliminating these pollutants, its widespread use is hindered by the sluggish regeneration of Fe2+ from Fe3+. Here, this study demonstrates for the first time that combining an Fe catalyst with Mo2C (Fe-Mo2C) enhances the Fe³⁺/Fe2⁺ cycle, thereby improving PMS activation. The Fe-Mo2C/PMS system achieved near-complete degradation of carbamazepine (CBZ) within only 8 min, with an impressive observed rate constant (kobs) of up to 0.624 min−1, about 15 times greater than that of Fe-C catalyst. It also exhibits the capability to degrade a broad range of common antibiotics, phenols, and dye-like organic compounds. Through electron paramagnetic resonance (EPR) analysis and quenching experiments, it was verified that hydroxyl radicals (·OH), sulfate radicals (SO4·-), singlet oxygen (1O2), and superoxide radicals (·O2−) species during the reaction, with the former three serving as the primary active species. These findings offer a hopeful avenue for the systematic development and enhancement of catalysts specifically designed to efficiently remediate organic pollutants in wastewater. [Display omitted] •A novel Fe-Mo2C catalyst was synthesized using a coprecipitation and calcination method.•The introduction of Mo2C accelerated the Fe3+/Fe2+ cycle for peroxymonosulfate activation.•The catalytic system achieved a notable rate constant of 0.624 min−1 for carbamazepine removal.•SO4·-, ·OH, 1O2 and ·O2− were identified as the primary active species.</description><identifier>ISSN: 0045-6535</identifier><identifier>ISSN: 1879-1298</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2024.143380</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>catalysts ; electron paramagnetic resonance spectroscopy ; Heterogeneous iron catalysts ; Molybdenum carbide ; Organic pollutants ; Peroxymonosulfate ; remediation ; singlet oxygen ; species ; sulfates ; wastewater ; Water treatment</subject><ispartof>Chemosphere (Oxford), 2024-11, Vol.367, p.143380, Article 143380</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1763-9e40d428ad7ed8627cee798da8c13d7d8e8d502799d03a19973d039c4b03c5af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653524022781$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ying, Yunzhan</creatorcontrib><creatorcontrib>Liang, Shikun</creatorcontrib><creatorcontrib>Zhang, Fayang</creatorcontrib><creatorcontrib>Xu, Xiangwei</creatorcontrib><creatorcontrib>Qian, Chenbo</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Wan, Yulong</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Yao, Yuyuan</creatorcontrib><title>Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation</title><title>Chemosphere (Oxford)</title><description>The harmful impact of organic pollutants on aquatic ecosystems underscores the pressing need for effective remediation. While activating peroxymonosulfate (PMS) with Fe catalyst offers a promising approach for eliminating these pollutants, its widespread use is hindered by the sluggish regeneration of Fe2+ from Fe3+. Here, this study demonstrates for the first time that combining an Fe catalyst with Mo2C (Fe-Mo2C) enhances the Fe³⁺/Fe2⁺ cycle, thereby improving PMS activation. The Fe-Mo2C/PMS system achieved near-complete degradation of carbamazepine (CBZ) within only 8 min, with an impressive observed rate constant (kobs) of up to 0.624 min−1, about 15 times greater than that of Fe-C catalyst. It also exhibits the capability to degrade a broad range of common antibiotics, phenols, and dye-like organic compounds. Through electron paramagnetic resonance (EPR) analysis and quenching experiments, it was verified that hydroxyl radicals (·OH), sulfate radicals (SO4·-), singlet oxygen (1O2), and superoxide radicals (·O2−) species during the reaction, with the former three serving as the primary active species. These findings offer a hopeful avenue for the systematic development and enhancement of catalysts specifically designed to efficiently remediate organic pollutants in wastewater. [Display omitted] •A novel Fe-Mo2C catalyst was synthesized using a coprecipitation and calcination method.•The introduction of Mo2C accelerated the Fe3+/Fe2+ cycle for peroxymonosulfate activation.•The catalytic system achieved a notable rate constant of 0.624 min−1 for carbamazepine removal.•SO4·-, ·OH, 1O2 and ·O2− were identified as the primary active species.</description><subject>catalysts</subject><subject>electron paramagnetic resonance spectroscopy</subject><subject>Heterogeneous iron catalysts</subject><subject>Molybdenum carbide</subject><subject>Organic pollutants</subject><subject>Peroxymonosulfate</subject><subject>remediation</subject><subject>singlet oxygen</subject><subject>species</subject><subject>sulfates</subject><subject>wastewater</subject><subject>Water treatment</subject><issn>0045-6535</issn><issn>1879-1298</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxYMoWKvfId4E2TZ_NpvkWIpVoeJFjxJiMsWU3U1NUrHf3q314LGnGZj3HvN-CF1TMqGENtP1xH1AF_PmAxJMGGH1hNacK3KCRlRJXVGm1SkaEVKLqhFcnKOLnNeEDGahR-ht5hy0kGwBjxfAb6cLYLfY7VwLOPT4KbJ59W7z7xU7W2y7ywWXiDcpdrEA3kCK37su9jFv29WQg60r4cuWEPtLdLaybYarvzlGr4u7l_lDtXy-f5zPlpWjsuGVhpr4minrJXjVMOkApFbeKke5l16B8oIwqbUn3FKtJR8W7ep3wp2wKz5GN4fc4anPLeRiupCHXq3tIW6z4VTUVDRC8iOkRHGlCdtL9UHqUsw5wcpsUuhs2hlKzJ6-WZt_9M2evjnQH7zzgxeG2l8BkskuQO_AhwSuGB_DESk_lkeS9A</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ying, Yunzhan</creator><creator>Liang, Shikun</creator><creator>Zhang, Fayang</creator><creator>Xu, Xiangwei</creator><creator>Qian, Chenbo</creator><creator>Jiang, Long</creator><creator>Zhou, Jing</creator><creator>Wan, Yulong</creator><creator>Wang, Lie</creator><creator>Yao, Yuyuan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202411</creationdate><title>Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation</title><author>Ying, Yunzhan ; Liang, Shikun ; Zhang, Fayang ; Xu, Xiangwei ; Qian, Chenbo ; Jiang, Long ; Zhou, Jing ; Wan, Yulong ; Wang, Lie ; Yao, Yuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1763-9e40d428ad7ed8627cee798da8c13d7d8e8d502799d03a19973d039c4b03c5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>catalysts</topic><topic>electron paramagnetic resonance spectroscopy</topic><topic>Heterogeneous iron catalysts</topic><topic>Molybdenum carbide</topic><topic>Organic pollutants</topic><topic>Peroxymonosulfate</topic><topic>remediation</topic><topic>singlet oxygen</topic><topic>species</topic><topic>sulfates</topic><topic>wastewater</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Yunzhan</creatorcontrib><creatorcontrib>Liang, Shikun</creatorcontrib><creatorcontrib>Zhang, Fayang</creatorcontrib><creatorcontrib>Xu, Xiangwei</creatorcontrib><creatorcontrib>Qian, Chenbo</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Wan, Yulong</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Yao, Yuyuan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Yunzhan</au><au>Liang, Shikun</au><au>Zhang, Fayang</au><au>Xu, Xiangwei</au><au>Qian, Chenbo</au><au>Jiang, Long</au><au>Zhou, Jing</au><au>Wan, Yulong</au><au>Wang, Lie</au><au>Yao, Yuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation</atitle><jtitle>Chemosphere (Oxford)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>367</volume><spage>143380</spage><pages>143380-</pages><artnum>143380</artnum><issn>0045-6535</issn><issn>1879-1298</issn><eissn>1879-1298</eissn><abstract>The harmful impact of organic pollutants on aquatic ecosystems underscores the pressing need for effective remediation. While activating peroxymonosulfate (PMS) with Fe catalyst offers a promising approach for eliminating these pollutants, its widespread use is hindered by the sluggish regeneration of Fe2+ from Fe3+. Here, this study demonstrates for the first time that combining an Fe catalyst with Mo2C (Fe-Mo2C) enhances the Fe³⁺/Fe2⁺ cycle, thereby improving PMS activation. The Fe-Mo2C/PMS system achieved near-complete degradation of carbamazepine (CBZ) within only 8 min, with an impressive observed rate constant (kobs) of up to 0.624 min−1, about 15 times greater than that of Fe-C catalyst. It also exhibits the capability to degrade a broad range of common antibiotics, phenols, and dye-like organic compounds. Through electron paramagnetic resonance (EPR) analysis and quenching experiments, it was verified that hydroxyl radicals (·OH), sulfate radicals (SO4·-), singlet oxygen (1O2), and superoxide radicals (·O2−) species during the reaction, with the former three serving as the primary active species. These findings offer a hopeful avenue for the systematic development and enhancement of catalysts specifically designed to efficiently remediate organic pollutants in wastewater. [Display omitted] •A novel Fe-Mo2C catalyst was synthesized using a coprecipitation and calcination method.•The introduction of Mo2C accelerated the Fe3+/Fe2+ cycle for peroxymonosulfate activation.•The catalytic system achieved a notable rate constant of 0.624 min−1 for carbamazepine removal.•SO4·-, ·OH, 1O2 and ·O2− were identified as the primary active species.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chemosphere.2024.143380</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2024-11, Vol.367, p.143380, Article 143380
issn 0045-6535
1879-1298
1879-1298
language eng
recordid cdi_proquest_miscellaneous_3154156573
source Elsevier ScienceDirect Journals
subjects catalysts
electron paramagnetic resonance spectroscopy
Heterogeneous iron catalysts
Molybdenum carbide
Organic pollutants
Peroxymonosulfate
remediation
singlet oxygen
species
sulfates
wastewater
Water treatment
title Accelerated Fe3+/Fe2+ cycle in Mo2C-based Fe catalyst to promote peroxymonosulfate activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Fe3+/Fe2+%20cycle%20in%20Mo2C-based%20Fe%20catalyst%20to%20promote%20peroxymonosulfate%20activation&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Ying,%20Yunzhan&rft.date=2024-11&rft.volume=367&rft.spage=143380&rft.pages=143380-&rft.artnum=143380&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2024.143380&rft_dat=%3Cproquest_cross%3E3108389023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108389023&rft_id=info:pmid/&rft_els_id=S0045653524022781&rfr_iscdi=true