Chromatin enables precise and scalable gene regulation with factors of limited specificity
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly le...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2025-01, Vol.122 (1), p.e2411887121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e2411887121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 122 |
creator | Perkins, Mindy Liu Crocker, Justin Tkačik, Gašper |
description | Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error. |
doi_str_mv | 10.1073/pnas.2411887121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154148055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160326641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-23d5e73714a4798d0c8df97fb2c44f7e861d3bb74fb6344e5e94bc9e881c77e13</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMotlbX7iTgxs20ec0kWUrxBQU3unEzZDI3bcq8TGaQ_nuntCq4unD4zuHyIXRNyZwSyRddY-KcCUqVkpTREzSlRNMkE5qcoikhTCZKMDFBFzFuCSE6VeQcTbiWmhOVTdHHchPa2vS-wdCYooKIuwDWR8CmKXG0ptqneA0N4ADroRrZtsFfvt9gZ2zfhohbhytf-x7GQjeWnbe-312iM2eqCFfHO0Pvjw9vy-dk9fr0srxfJZYR3SeMlylILqkwQmpVEqtKp6UrmBXCSVAZLXlRSOGKjAsBKWhRWA1KUSslUD5Dd4fdLrSfA8Q-r320UFWmgXaIOaepoEKRNB3R23_oth1CM343UhnhLMvEfnBxoGxoYwzg8i742oRdTkm-157vted_2sfGzXF3KGoof_kfz_wbgIh-Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160326641</pqid></control><display><type>article</type><title>Chromatin enables precise and scalable gene regulation with factors of limited specificity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Perkins, Mindy Liu ; Crocker, Justin ; Tkačik, Gašper</creator><creatorcontrib>Perkins, Mindy Liu ; Crocker, Justin ; Tkačik, Gašper</creatorcontrib><description>Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2411887121</identifier><identifier>PMID: 39793086</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin remodeling ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; Error reduction ; Gene expression ; Gene Expression Regulation ; Gene regulation ; Gene silencing ; Genes ; Models, Genetic ; Protein Binding ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2025-01, Vol.122 (1), p.e2411887121</ispartof><rights>Copyright National Academy of Sciences Jan 7, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-23d5e73714a4798d0c8df97fb2c44f7e861d3bb74fb6344e5e94bc9e881c77e13</cites><orcidid>0000-0001-7839-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39793086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Mindy Liu</creatorcontrib><creatorcontrib>Crocker, Justin</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><title>Chromatin enables precise and scalable gene regulation with factors of limited specificity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.</description><subject>Binding</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin remodeling</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Error reduction</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Models, Genetic</subject><subject>Protein Binding</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEUhYMotlbX7iTgxs20ec0kWUrxBQU3unEzZDI3bcq8TGaQ_nuntCq4unD4zuHyIXRNyZwSyRddY-KcCUqVkpTREzSlRNMkE5qcoikhTCZKMDFBFzFuCSE6VeQcTbiWmhOVTdHHchPa2vS-wdCYooKIuwDWR8CmKXG0ptqneA0N4ADroRrZtsFfvt9gZ2zfhohbhytf-x7GQjeWnbe-312iM2eqCFfHO0Pvjw9vy-dk9fr0srxfJZYR3SeMlylILqkwQmpVEqtKp6UrmBXCSVAZLXlRSOGKjAsBKWhRWA1KUSslUD5Dd4fdLrSfA8Q-r320UFWmgXaIOaepoEKRNB3R23_oth1CM343UhnhLMvEfnBxoGxoYwzg8i742oRdTkm-157vted_2sfGzXF3KGoof_kfz_wbgIh-Zg</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Perkins, Mindy Liu</creator><creator>Crocker, Justin</creator><creator>Tkačik, Gašper</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7839-5055</orcidid></search><sort><creationdate>20250107</creationdate><title>Chromatin enables precise and scalable gene regulation with factors of limited specificity</title><author>Perkins, Mindy Liu ; Crocker, Justin ; Tkačik, Gašper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-23d5e73714a4798d0c8df97fb2c44f7e861d3bb74fb6344e5e94bc9e881c77e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Binding</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin remodeling</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Error reduction</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Models, Genetic</topic><topic>Protein Binding</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Mindy Liu</creatorcontrib><creatorcontrib>Crocker, Justin</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Mindy Liu</au><au>Crocker, Justin</au><au>Tkačik, Gašper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin enables precise and scalable gene regulation with factors of limited specificity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2025-01-07</date><risdate>2025</risdate><volume>122</volume><issue>1</issue><spage>e2411887121</spage><pages>e2411887121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39793086</pmid><doi>10.1073/pnas.2411887121</doi><orcidid>https://orcid.org/0000-0001-7839-5055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2025-01, Vol.122 (1), p.e2411887121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154148055 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Binding Chromatin - genetics Chromatin - metabolism Chromatin remodeling Deoxyribonucleic acid DNA DNA - genetics DNA - metabolism Error reduction Gene expression Gene Expression Regulation Gene regulation Gene silencing Genes Models, Genetic Protein Binding Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Chromatin enables precise and scalable gene regulation with factors of limited specificity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20enables%20precise%20and%20scalable%20gene%20regulation%20with%20factors%20of%20limited%20specificity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Perkins,%20Mindy%20Liu&rft.date=2025-01-07&rft.volume=122&rft.issue=1&rft.spage=e2411887121&rft.pages=e2411887121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2411887121&rft_dat=%3Cproquest_cross%3E3160326641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160326641&rft_id=info:pmid/39793086&rfr_iscdi=true |