Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability

This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2025-01, Vol.23 (1), p.2, Article 2
Hauptverfasser: Eghbali, Reza, Nedelec, Pierre, Weiss, David, Bhalerao, Radhika, Xie, Long, Rudie, Jeffrey D., Liu, Chunlei, Sugrue, Leo P., Rauschecker, Andreas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title Neuroinformatics (Totowa, N.J.)
container_volume 23
creator Eghbali, Reza
Nedelec, Pierre
Weiss, David
Bhalerao, Radhika
Xie, Long
Rudie, Jeffrey D.
Liu, Chunlei
Sugrue, Leo P.
Rauschecker, Andreas M.
description This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline. In this manuscript, we give an overview of ALFE, present the main aspects of ALFE pipeline design philosophy, and present case studies.
doi_str_mv 10.1007/s12021-024-09708-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153916447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153378924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271z-333a6edd34bf766083b6c352f96b0917054fa5f7f80a1a56d6390457479ad5b43</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi3UqlDaP8ABWeLSS2Acx3Z8qiiCstJWVFU5W04yAaOsvdhOW_bXN8vyVQ492fI883hGLyF7DA4ZgDpKrISSFVBWBWgFdbHaIjtMCF0A1PrNi_s2eZ_SDUApFcA7ss21qqUUaodcHo85LGzGjs4xueCp9R09Q5vHiPT0T462zevn726Jg_NI-xDpl2idp99-zBL97fI1nfmMcRkx28YNLt99IG97OyT8-HDuksuz058n58X84uvs5HhetKViq4JzbiV2Ha-aXkkJNW9ky0XZa9mAZgpE1VvRq74Gy6yQneQaKqEqpW0nmorvks8b73JsFti16Kd5B7OMbmHjnQnWmX8r3l2bq_DLMKaYqvXa8OnBEMPtiCmbhUstDoP1GMZkOBNcM1lVakIPXqE3YYx-2u-e4pOvXAvLDdXGkFLE_mkaBmYdm9nEZqbYzH1sZjU17b_c46nlMacJ4BsgTSV_hfH57_9o_wIgsqOT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153378924</pqid></control><display><type>article</type><title>Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Eghbali, Reza ; Nedelec, Pierre ; Weiss, David ; Bhalerao, Radhika ; Xie, Long ; Rudie, Jeffrey D. ; Liu, Chunlei ; Sugrue, Leo P. ; Rauschecker, Andreas M.</creator><creatorcontrib>Eghbali, Reza ; Nedelec, Pierre ; Weiss, David ; Bhalerao, Radhika ; Xie, Long ; Rudie, Jeffrey D. ; Liu, Chunlei ; Sugrue, Leo P. ; Rauschecker, Andreas M.</creatorcontrib><description>This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline. In this manuscript, we give an overview of ALFE, present the main aspects of ALFE pipeline design philosophy, and present case studies.</description><identifier>ISSN: 1559-0089</identifier><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-024-09708-z</identifier><identifier>PMID: 39786657</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Automation ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain cancer ; Brain research ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Glioma ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image Processing, Computer-Assisted - methods ; Lesions ; Lymphoma ; Machine Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Open source software ; Radiomics ; Software ; Tumors</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2025-01, Vol.23 (1), p.2, Article 2</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271z-333a6edd34bf766083b6c352f96b0917054fa5f7f80a1a56d6390457479ad5b43</cites><orcidid>0000-0003-4856-3059 ; 0000-0002-8535-1541 ; 0000-0001-8816-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-024-09708-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-024-09708-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39786657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eghbali, Reza</creatorcontrib><creatorcontrib>Nedelec, Pierre</creatorcontrib><creatorcontrib>Weiss, David</creatorcontrib><creatorcontrib>Bhalerao, Radhika</creatorcontrib><creatorcontrib>Xie, Long</creatorcontrib><creatorcontrib>Rudie, Jeffrey D.</creatorcontrib><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Sugrue, Leo P.</creatorcontrib><creatorcontrib>Rauschecker, Andreas M.</creatorcontrib><title>Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline. In this manuscript, we give an overview of ALFE, present the main aspects of ALFE pipeline design philosophy, and present case studies.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain research</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Glioma</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Lymphoma</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Open source software</subject><subject>Radiomics</subject><subject>Software</subject><subject>Tumors</subject><issn>1559-0089</issn><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi3UqlDaP8ABWeLSS2Acx3Z8qiiCstJWVFU5W04yAaOsvdhOW_bXN8vyVQ492fI883hGLyF7DA4ZgDpKrISSFVBWBWgFdbHaIjtMCF0A1PrNi_s2eZ_SDUApFcA7ss21qqUUaodcHo85LGzGjs4xueCp9R09Q5vHiPT0T462zevn726Jg_NI-xDpl2idp99-zBL97fI1nfmMcRkx28YNLt99IG97OyT8-HDuksuz058n58X84uvs5HhetKViq4JzbiV2Ha-aXkkJNW9ky0XZa9mAZgpE1VvRq74Gy6yQneQaKqEqpW0nmorvks8b73JsFti16Kd5B7OMbmHjnQnWmX8r3l2bq_DLMKaYqvXa8OnBEMPtiCmbhUstDoP1GMZkOBNcM1lVakIPXqE3YYx-2u-e4pOvXAvLDdXGkFLE_mkaBmYdm9nEZqbYzH1sZjU17b_c46nlMacJ4BsgTSV_hfH57_9o_wIgsqOT</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Eghbali, Reza</creator><creator>Nedelec, Pierre</creator><creator>Weiss, David</creator><creator>Bhalerao, Radhika</creator><creator>Xie, Long</creator><creator>Rudie, Jeffrey D.</creator><creator>Liu, Chunlei</creator><creator>Sugrue, Leo P.</creator><creator>Rauschecker, Andreas M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4856-3059</orcidid><orcidid>https://orcid.org/0000-0002-8535-1541</orcidid><orcidid>https://orcid.org/0000-0001-8816-4832</orcidid></search><sort><creationdate>20250109</creationdate><title>Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability</title><author>Eghbali, Reza ; Nedelec, Pierre ; Weiss, David ; Bhalerao, Radhika ; Xie, Long ; Rudie, Jeffrey D. ; Liu, Chunlei ; Sugrue, Leo P. ; Rauschecker, Andreas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271z-333a6edd34bf766083b6c352f96b0917054fa5f7f80a1a56d6390457479ad5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain research</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Glioma</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Lymphoma</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Open source software</topic><topic>Radiomics</topic><topic>Software</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eghbali, Reza</creatorcontrib><creatorcontrib>Nedelec, Pierre</creatorcontrib><creatorcontrib>Weiss, David</creatorcontrib><creatorcontrib>Bhalerao, Radhika</creatorcontrib><creatorcontrib>Xie, Long</creatorcontrib><creatorcontrib>Rudie, Jeffrey D.</creatorcontrib><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Sugrue, Leo P.</creatorcontrib><creatorcontrib>Rauschecker, Andreas M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eghbali, Reza</au><au>Nedelec, Pierre</au><au>Weiss, David</au><au>Bhalerao, Radhika</au><au>Xie, Long</au><au>Rudie, Jeffrey D.</au><au>Liu, Chunlei</au><au>Sugrue, Leo P.</au><au>Rauschecker, Andreas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>23</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>1559-0089</issn><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline. In this manuscript, we give an overview of ALFE, present the main aspects of ALFE pipeline design philosophy, and present case studies.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39786657</pmid><doi>10.1007/s12021-024-09708-z</doi><orcidid>https://orcid.org/0000-0003-4856-3059</orcidid><orcidid>https://orcid.org/0000-0002-8535-1541</orcidid><orcidid>https://orcid.org/0000-0001-8816-4832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-0089
ispartof Neuroinformatics (Totowa, N.J.), 2025-01, Vol.23 (1), p.2, Article 2
issn 1559-0089
1539-2791
1559-0089
language eng
recordid cdi_proquest_miscellaneous_3153916447
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Automation
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Brain cancer
Brain research
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Glioma
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Lesions
Lymphoma
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
Open source software
Radiomics
Software
Tumors
title Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Lesion%20and%20Feature%20Extraction%20Pipeline%20for%20Brain%20MRIs%20with%20Interpretability&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Eghbali,%20Reza&rft.date=2025-01-09&rft.volume=23&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=1559-0089&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-024-09708-z&rft_dat=%3Cproquest_pubme%3E3153378924%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153378924&rft_id=info:pmid/39786657&rfr_iscdi=true