Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning

Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2025-01, Vol.19 (2), p.2334-2344
Hauptverfasser: Kamšek, Ana Rebeka, Ruiz-Zepeda, Francisco, Bele, Marjan, Logar, Anja, Dražić, Goran, Hodnik, Nejc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2344
container_issue 2
container_start_page 2334
container_title ACS nano
container_volume 19
creator Kamšek, Ana Rebeka
Ruiz-Zepeda, Francisco
Bele, Marjan
Logar, Anja
Dražić, Goran
Hodnik, Nejc
description Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns. In this study, we track the alternations of the crystal structure of individual carbon-supported PtCu3 nanoparticles before and after fuel cell-relevant activation treatment, consisting of a mild acid-washing protocol and potential cycling, essential for forming an active catalyst. To take full advantage of the rich, identical location 4D-STEM capabilities, unsupervised algorithms were used for the complex data analysis, starting with k-means clustering followed by non-negative matrix factorization, to find commonly occurring signals within specific nanoparticle data. The study revealed domains with (partially) ordered alloy structures, twin boundaries, and local amorphization. After activation, specific nanoparticle surface sites exhibited a loss of crystallinity which can be correlated to the simultaneous local scarcity of the ordered alloy phase, confirming the enhanced stability of the ordered alloy during potential cycling activation conditions. With the capabilities of our in-house developed identical-location 4D-STEM approach to track changes in individual nanoparticles, combined with advanced data analysis, we determine how activation treatment affects the electrocatalysts’ local crystal structure. Such an approach provides considerably richer insights and is much more sensitive to minor changes than traditional STEM imaging. This workflow requires little manual input, has a reasonable computational complexity, and is transferrable to other functional nanomaterials.
doi_str_mv 10.1021/acsnano.4c12528
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153872641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153872641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-20f250f18bdd97e888feaaeecbd316bc863b6d6491b7d936c7c614800b56e53e3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEoqVw5oZ8REJp7fyxsydUlbZU2gJiuxI3a-JMuq68dmo7lfbGO_RReCOeBIddVnDg5PH4N9945suy14weM1qwE1DBgnXHlWJFXTRPskM2K3lOG_7t6T6u2UH2IoQ7SmvRCP48OyhnQhQVrw-zH4voRxVHjz-_Py4itNrouCFf0UDUzoaVHgLRlnyJ-akxbkM-pXYD-KiVwUCWQdtbctWhTQkw-dyp33Xkwo0-_6DXaEO6giELBdZO8I0HG9Y6THlyblBFn4JrrbwLyg0bArYjSxvGAf2DDtiRa1ArbZHMEfwk8TJ71oMJ-Gp3HmXLi_Obs4_5_PPl1dnpPIeSVTEvaF_UtGdN23UzgU3T9AiAqNquZLxVDS9b3vFqxlrRpU0poTirGkrbmmNdYnmUvd_qDmO7xk6lIT0YOXi9Br-RDrT898Xqlbx1D5IxwSkTdVJ4u1Pw7n7EEGUaXKExYNGNQZasLhtR8Iol9GSLTnsIHvt9H0bl5LXceS13XqeKN39_b8__MTcB77ZAqpR3yZDkQ_iv3C9HjL13</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153872641</pqid></control><display><type>article</type><title>Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Kamšek, Ana Rebeka ; Ruiz-Zepeda, Francisco ; Bele, Marjan ; Logar, Anja ; Dražić, Goran ; Hodnik, Nejc</creator><creatorcontrib>Kamšek, Ana Rebeka ; Ruiz-Zepeda, Francisco ; Bele, Marjan ; Logar, Anja ; Dražić, Goran ; Hodnik, Nejc</creatorcontrib><description>Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns. In this study, we track the alternations of the crystal structure of individual carbon-supported PtCu3 nanoparticles before and after fuel cell-relevant activation treatment, consisting of a mild acid-washing protocol and potential cycling, essential for forming an active catalyst. To take full advantage of the rich, identical location 4D-STEM capabilities, unsupervised algorithms were used for the complex data analysis, starting with k-means clustering followed by non-negative matrix factorization, to find commonly occurring signals within specific nanoparticle data. The study revealed domains with (partially) ordered alloy structures, twin boundaries, and local amorphization. After activation, specific nanoparticle surface sites exhibited a loss of crystallinity which can be correlated to the simultaneous local scarcity of the ordered alloy phase, confirming the enhanced stability of the ordered alloy during potential cycling activation conditions. With the capabilities of our in-house developed identical-location 4D-STEM approach to track changes in individual nanoparticles, combined with advanced data analysis, we determine how activation treatment affects the electrocatalysts’ local crystal structure. Such an approach provides considerably richer insights and is much more sensitive to minor changes than traditional STEM imaging. This workflow requires little manual input, has a reasonable computational complexity, and is transferrable to other functional nanomaterials.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c12528</identifier><identifier>PMID: 39772465</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2025-01, Vol.19 (2), p.2334-2344</ispartof><rights>2025 The Authors. Published by American Chemical Society</rights><rights>2025 The Authors. Published by American Chemical Society 2025 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a314t-20f250f18bdd97e888feaaeecbd316bc863b6d6491b7d936c7c614800b56e53e3</cites><orcidid>0000-0003-0002-5489 ; 0000-0002-7113-9769 ; 0000-0001-7809-8050 ; 0009-0008-6247-3256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c12528$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c12528$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39772465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamšek, Ana Rebeka</creatorcontrib><creatorcontrib>Ruiz-Zepeda, Francisco</creatorcontrib><creatorcontrib>Bele, Marjan</creatorcontrib><creatorcontrib>Logar, Anja</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Hodnik, Nejc</creatorcontrib><title>Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns. In this study, we track the alternations of the crystal structure of individual carbon-supported PtCu3 nanoparticles before and after fuel cell-relevant activation treatment, consisting of a mild acid-washing protocol and potential cycling, essential for forming an active catalyst. To take full advantage of the rich, identical location 4D-STEM capabilities, unsupervised algorithms were used for the complex data analysis, starting with k-means clustering followed by non-negative matrix factorization, to find commonly occurring signals within specific nanoparticle data. The study revealed domains with (partially) ordered alloy structures, twin boundaries, and local amorphization. After activation, specific nanoparticle surface sites exhibited a loss of crystallinity which can be correlated to the simultaneous local scarcity of the ordered alloy phase, confirming the enhanced stability of the ordered alloy during potential cycling activation conditions. With the capabilities of our in-house developed identical-location 4D-STEM approach to track changes in individual nanoparticles, combined with advanced data analysis, we determine how activation treatment affects the electrocatalysts’ local crystal structure. Such an approach provides considerably richer insights and is much more sensitive to minor changes than traditional STEM imaging. This workflow requires little manual input, has a reasonable computational complexity, and is transferrable to other functional nanomaterials.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxiMEoqVw5oZ8REJp7fyxsydUlbZU2gJiuxI3a-JMuq68dmo7lfbGO_RReCOeBIddVnDg5PH4N9945suy14weM1qwE1DBgnXHlWJFXTRPskM2K3lOG_7t6T6u2UH2IoQ7SmvRCP48OyhnQhQVrw-zH4voRxVHjz-_Py4itNrouCFf0UDUzoaVHgLRlnyJ-akxbkM-pXYD-KiVwUCWQdtbctWhTQkw-dyp33Xkwo0-_6DXaEO6giELBdZO8I0HG9Y6THlyblBFn4JrrbwLyg0bArYjSxvGAf2DDtiRa1ArbZHMEfwk8TJ71oMJ-Gp3HmXLi_Obs4_5_PPl1dnpPIeSVTEvaF_UtGdN23UzgU3T9AiAqNquZLxVDS9b3vFqxlrRpU0poTirGkrbmmNdYnmUvd_qDmO7xk6lIT0YOXi9Br-RDrT898Xqlbx1D5IxwSkTdVJ4u1Pw7n7EEGUaXKExYNGNQZasLhtR8Iol9GSLTnsIHvt9H0bl5LXceS13XqeKN39_b8__MTcB77ZAqpR3yZDkQ_iv3C9HjL13</recordid><startdate>20250121</startdate><enddate>20250121</enddate><creator>Kamšek, Ana Rebeka</creator><creator>Ruiz-Zepeda, Francisco</creator><creator>Bele, Marjan</creator><creator>Logar, Anja</creator><creator>Dražić, Goran</creator><creator>Hodnik, Nejc</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0002-5489</orcidid><orcidid>https://orcid.org/0000-0002-7113-9769</orcidid><orcidid>https://orcid.org/0000-0001-7809-8050</orcidid><orcidid>https://orcid.org/0009-0008-6247-3256</orcidid></search><sort><creationdate>20250121</creationdate><title>Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning</title><author>Kamšek, Ana Rebeka ; Ruiz-Zepeda, Francisco ; Bele, Marjan ; Logar, Anja ; Dražić, Goran ; Hodnik, Nejc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-20f250f18bdd97e888feaaeecbd316bc863b6d6491b7d936c7c614800b56e53e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamšek, Ana Rebeka</creatorcontrib><creatorcontrib>Ruiz-Zepeda, Francisco</creatorcontrib><creatorcontrib>Bele, Marjan</creatorcontrib><creatorcontrib>Logar, Anja</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Hodnik, Nejc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamšek, Ana Rebeka</au><au>Ruiz-Zepeda, Francisco</au><au>Bele, Marjan</au><au>Logar, Anja</au><au>Dražić, Goran</au><au>Hodnik, Nejc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2025-01-21</date><risdate>2025</risdate><volume>19</volume><issue>2</issue><spage>2334</spage><epage>2344</epage><pages>2334-2344</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns. In this study, we track the alternations of the crystal structure of individual carbon-supported PtCu3 nanoparticles before and after fuel cell-relevant activation treatment, consisting of a mild acid-washing protocol and potential cycling, essential for forming an active catalyst. To take full advantage of the rich, identical location 4D-STEM capabilities, unsupervised algorithms were used for the complex data analysis, starting with k-means clustering followed by non-negative matrix factorization, to find commonly occurring signals within specific nanoparticle data. The study revealed domains with (partially) ordered alloy structures, twin boundaries, and local amorphization. After activation, specific nanoparticle surface sites exhibited a loss of crystallinity which can be correlated to the simultaneous local scarcity of the ordered alloy phase, confirming the enhanced stability of the ordered alloy during potential cycling activation conditions. With the capabilities of our in-house developed identical-location 4D-STEM approach to track changes in individual nanoparticles, combined with advanced data analysis, we determine how activation treatment affects the electrocatalysts’ local crystal structure. Such an approach provides considerably richer insights and is much more sensitive to minor changes than traditional STEM imaging. This workflow requires little manual input, has a reasonable computational complexity, and is transferrable to other functional nanomaterials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39772465</pmid><doi>10.1021/acsnano.4c12528</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0002-5489</orcidid><orcidid>https://orcid.org/0000-0002-7113-9769</orcidid><orcidid>https://orcid.org/0000-0001-7809-8050</orcidid><orcidid>https://orcid.org/0009-0008-6247-3256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2025-01, Vol.19 (2), p.2334-2344
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3153872641
source ACS_美国化学学会期刊(与NSTL共建)
title Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93Stability%20Relationships%20in%20Pt-Alloy%20Nanoparticles%20Using%20Identical-Location%20Four-Dimensional%20Scanning%20Transmission%20Electron%20Microscopy%20and%20Unsupervised%20Machine%20Learning&rft.jtitle=ACS%20nano&rft.au=Kams%CC%8Cek,%20Ana%20Rebeka&rft.date=2025-01-21&rft.volume=19&rft.issue=2&rft.spage=2334&rft.epage=2344&rft.pages=2334-2344&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c12528&rft_dat=%3Cproquest_pubme%3E3153872641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153872641&rft_id=info:pmid/39772465&rfr_iscdi=true