Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach
Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data...
Gespeichert in:
Veröffentlicht in: | European journal of agronomy 2024-11, Vol.161, p.127387, Article 127387 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 127387 |
container_title | European journal of agronomy |
container_volume | 161 |
creator | Elsherbiny, Osama Gao, Jianmin Ma, Ming Guo, Yinan Tunio, Mazhar H. Mosha, Abdallah H. |
description | Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
[Display omitted]
•Allocating modalities data to meta-learning is a promising implement for sensing plant physiological factors.•IoT-enabled data collection optimizes aeroponic processes, offering an intelligent, low-cost, and rapid solution.•Gradient boosting machines configuration had a vital impact on prediction accuracy when picking top-level variables.•Fusion of multiple features enhanced the precision of evaluating LRH (87.5 %), Chl (88.6 %), and N (93.0 %) content. |
doi_str_mv | 10.1016/j.eja.2024.127387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153861338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1161030124003083</els_id><sourcerecordid>3153861338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-a52d6bc8cceddc242bafe8cd68cb1cec9d8d652c8e2797e9ce83bafd5d7f20453</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRbcAiRD4ADqXNBts78uBKop4RIpEE2rLGc8mXm3sxfYG5e9xFGqqae65M3Oy7IHRGaOsfupm2KkZp7ycMd4UornKJozVLKcFZTfZbQgdpVTwqpxkPwt9VBaM3ZEeYxwBybA_BeN6tzOgehKiikg8gttZE42zxFiychui0LvBWQMknELEQ3gmC3LAqPIelbepMdfeHNESraIi7RjOsBoG7xTs77LrVvUB7__mNPt6e90sP_L15_tquVjnwBmPuaq4rrcgAFBr4CXfqhYF6FrAlgHCXAtdVxwE8mbe4BxQFCmiK920nJZVMc0eL71p7feIIcqDCYB9ryy6MciCVYWoWVGIFGWXKHgXgsdWDt4clD9JRuVZrOxkEivPYuVFbGJeLgymH44GvQxg0KZrTVIWpXbmH_oXCgiGnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153861338</pqid></control><display><type>article</type><title>Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Elsherbiny, Osama ; Gao, Jianmin ; Ma, Ming ; Guo, Yinan ; Tunio, Mazhar H. ; Mosha, Abdallah H.</creator><creatorcontrib>Elsherbiny, Osama ; Gao, Jianmin ; Ma, Ming ; Guo, Yinan ; Tunio, Mazhar H. ; Mosha, Abdallah H.</creatorcontrib><description>Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
[Display omitted]
•Allocating modalities data to meta-learning is a promising implement for sensing plant physiological factors.•IoT-enabled data collection optimizes aeroponic processes, offering an intelligent, low-cost, and rapid solution.•Gradient boosting machines configuration had a vital impact on prediction accuracy when picking top-level variables.•Fusion of multiple features enhanced the precision of evaluating LRH (87.5 %), Chl (88.6 %), and N (93.0 %) content.</description><identifier>ISSN: 1161-0301</identifier><identifier>DOI: 10.1016/j.eja.2024.127387</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>aeroponics ; agronomy ; chlorophyll ; Environmental conditions ; Feature selection ; IoT aeroponics ; leaves ; lettuce ; Machine learning ; Meta-learning ; nitrogen ; nitrogen content ; physiological state ; Physiological traits ; prediction ; reflectance ; relative humidity ; Spectral-thermal indices</subject><ispartof>European journal of agronomy, 2024-11, Vol.161, p.127387, Article 127387</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-a52d6bc8cceddc242bafe8cd68cb1cec9d8d652c8e2797e9ce83bafd5d7f20453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1161030124003083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Elsherbiny, Osama</creatorcontrib><creatorcontrib>Gao, Jianmin</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Guo, Yinan</creatorcontrib><creatorcontrib>Tunio, Mazhar H.</creatorcontrib><creatorcontrib>Mosha, Abdallah H.</creatorcontrib><title>Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach</title><title>European journal of agronomy</title><description>Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
[Display omitted]
•Allocating modalities data to meta-learning is a promising implement for sensing plant physiological factors.•IoT-enabled data collection optimizes aeroponic processes, offering an intelligent, low-cost, and rapid solution.•Gradient boosting machines configuration had a vital impact on prediction accuracy when picking top-level variables.•Fusion of multiple features enhanced the precision of evaluating LRH (87.5 %), Chl (88.6 %), and N (93.0 %) content.</description><subject>aeroponics</subject><subject>agronomy</subject><subject>chlorophyll</subject><subject>Environmental conditions</subject><subject>Feature selection</subject><subject>IoT aeroponics</subject><subject>leaves</subject><subject>lettuce</subject><subject>Machine learning</subject><subject>Meta-learning</subject><subject>nitrogen</subject><subject>nitrogen content</subject><subject>physiological state</subject><subject>Physiological traits</subject><subject>prediction</subject><subject>reflectance</subject><subject>relative humidity</subject><subject>Spectral-thermal indices</subject><issn>1161-0301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRbcAiRD4ADqXNBts78uBKop4RIpEE2rLGc8mXm3sxfYG5e9xFGqqae65M3Oy7IHRGaOsfupm2KkZp7ycMd4UornKJozVLKcFZTfZbQgdpVTwqpxkPwt9VBaM3ZEeYxwBybA_BeN6tzOgehKiikg8gttZE42zxFiychui0LvBWQMknELEQ3gmC3LAqPIelbepMdfeHNESraIi7RjOsBoG7xTs77LrVvUB7__mNPt6e90sP_L15_tquVjnwBmPuaq4rrcgAFBr4CXfqhYF6FrAlgHCXAtdVxwE8mbe4BxQFCmiK920nJZVMc0eL71p7feIIcqDCYB9ryy6MciCVYWoWVGIFGWXKHgXgsdWDt4clD9JRuVZrOxkEivPYuVFbGJeLgymH44GvQxg0KZrTVIWpXbmH_oXCgiGnw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Elsherbiny, Osama</creator><creator>Gao, Jianmin</creator><creator>Ma, Ming</creator><creator>Guo, Yinan</creator><creator>Tunio, Mazhar H.</creator><creator>Mosha, Abdallah H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202411</creationdate><title>Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach</title><author>Elsherbiny, Osama ; Gao, Jianmin ; Ma, Ming ; Guo, Yinan ; Tunio, Mazhar H. ; Mosha, Abdallah H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-a52d6bc8cceddc242bafe8cd68cb1cec9d8d652c8e2797e9ce83bafd5d7f20453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aeroponics</topic><topic>agronomy</topic><topic>chlorophyll</topic><topic>Environmental conditions</topic><topic>Feature selection</topic><topic>IoT aeroponics</topic><topic>leaves</topic><topic>lettuce</topic><topic>Machine learning</topic><topic>Meta-learning</topic><topic>nitrogen</topic><topic>nitrogen content</topic><topic>physiological state</topic><topic>Physiological traits</topic><topic>prediction</topic><topic>reflectance</topic><topic>relative humidity</topic><topic>Spectral-thermal indices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsherbiny, Osama</creatorcontrib><creatorcontrib>Gao, Jianmin</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Guo, Yinan</creatorcontrib><creatorcontrib>Tunio, Mazhar H.</creatorcontrib><creatorcontrib>Mosha, Abdallah H.</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>European journal of agronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsherbiny, Osama</au><au>Gao, Jianmin</au><au>Ma, Ming</au><au>Guo, Yinan</au><au>Tunio, Mazhar H.</au><au>Mosha, Abdallah H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach</atitle><jtitle>European journal of agronomy</jtitle><date>2024-11</date><risdate>2024</risdate><volume>161</volume><spage>127387</spage><pages>127387-</pages><artnum>127387</artnum><issn>1161-0301</issn><abstract>Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
[Display omitted]
•Allocating modalities data to meta-learning is a promising implement for sensing plant physiological factors.•IoT-enabled data collection optimizes aeroponic processes, offering an intelligent, low-cost, and rapid solution.•Gradient boosting machines configuration had a vital impact on prediction accuracy when picking top-level variables.•Fusion of multiple features enhanced the precision of evaluating LRH (87.5 %), Chl (88.6 %), and N (93.0 %) content.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eja.2024.127387</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1161-0301 |
ispartof | European journal of agronomy, 2024-11, Vol.161, p.127387, Article 127387 |
issn | 1161-0301 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153861338 |
source | Elsevier ScienceDirect Journals Complete |
subjects | aeroponics agronomy chlorophyll Environmental conditions Feature selection IoT aeroponics leaves lettuce Machine learning Meta-learning nitrogen nitrogen content physiological state Physiological traits prediction reflectance relative humidity Spectral-thermal indices |
title | Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20lettuce%20physiological%20state%20recognition%20in%20IoT%20aeroponic%20systems:%20A%20meta-learning-driven%20data%20fusion%20approach&rft.jtitle=European%20journal%20of%20agronomy&rft.au=Elsherbiny,%20Osama&rft.date=2024-11&rft.volume=161&rft.spage=127387&rft.pages=127387-&rft.artnum=127387&rft.issn=1161-0301&rft_id=info:doi/10.1016/j.eja.2024.127387&rft_dat=%3Cproquest_cross%3E3153861338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153861338&rft_id=info:pmid/&rft_els_id=S1161030124003083&rfr_iscdi=true |