Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems

The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2024-12, Vol.237, p.121543, Article 121543
Hauptverfasser: Hua, Lin, Junjie, Xia, Xiang, Gao, Lei, Zheng, Dengwei, Jing, Zhang, Xiongwen, Liejin, Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121543
container_title Renewable energy
container_volume 237
creator Hua, Lin
Junjie, Xia
Xiang, Gao
Lei, Zheng
Dengwei, Jing
Zhang, Xiongwen
Liejin, Guo
description The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering algorithm for renewable energy sources within a multi-objective, bi-level optimization framework. Specifically, the clearness index is employed to represent the stochastic distribution of solar radiation intensity by beta distribution, while wind speed uncertainty is modeled seasonally using the Weibull distribution. Monte Carlo sampling with synchronous back substitution is applied for scenario generation and reduction of solar radiation and wind speed. To address the multi-objective evaluation, the analytic hierarchy process is utilized, and the joint optimization is achieved by combining a region contraction algorithm with stochastic programming. The proposed methodology is validated on an IES featuring various heating devices, incorporating uncertainties in both wind and solar energy. The results indicate that the absorption heat pump-based scheme achieves superior energy-saving performance, achieving an energy rate of 0.4724. Additionally, the compression heat pump-based scheme exhibits excellent economic efficiency and environmental sustainability, with a cost of energy of 0.3639 and a renewable fraction of 0.5536.
doi_str_mv 10.1016/j.renene.2024.121543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153857064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124016112</els_id><sourcerecordid>3153857064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-77a1bb78d8ba116a28ad19483471d8995472bfbf3c0edfb89039e2963f41be183</originalsourceid><addsrcrecordid>eNp9kD9v3DAMxT00QNIk3yCDxi6-iLZsy0uBImj-AAEyJJkFSaYvPNjWVVRSXIB-9-rgzgUJcvnx4fEVxRXIDUhor3ebiEuuTSUrtYEKGlV_Kc5k38oSlIbT4ivzTkpodKfOij_PHhcbKZTOMg6CU_BvlhN5EfaJZvq0icIicqc3FB8ZtY4mSgcRRsFhslHYZRC_KY8xROHDvA_ZQBJMn7RsjxgtCbfRpqyfncXtQfCBE858UZyMdmK8_LfPi9fbny839-Xj093DzY_H0legU9l1Fpzr9KCdBWhtpe0AvdK16mDQfd-ornKjG2svcRid7mXdY9W39ajAIej6vPi26u5j-PWOnMxM7HGa7ILhnU0NTa2bTrYqo2pFfQzMEUezjzTbeDAgzTFhszNrwuaYsFkTzmff1zPMb3wQRsOecPE4UESfzBDo_wJ_AVIiizo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153857064</pqid></control><display><type>article</type><title>Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems</title><source>Elsevier ScienceDirect Journals</source><creator>Hua, Lin ; Junjie, Xia ; Xiang, Gao ; Lei, Zheng ; Dengwei, Jing ; Zhang, Xiongwen ; Liejin, Guo</creator><creatorcontrib>Hua, Lin ; Junjie, Xia ; Xiang, Gao ; Lei, Zheng ; Dengwei, Jing ; Zhang, Xiongwen ; Liejin, Guo</creatorcontrib><description>The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering algorithm for renewable energy sources within a multi-objective, bi-level optimization framework. Specifically, the clearness index is employed to represent the stochastic distribution of solar radiation intensity by beta distribution, while wind speed uncertainty is modeled seasonally using the Weibull distribution. Monte Carlo sampling with synchronous back substitution is applied for scenario generation and reduction of solar radiation and wind speed. To address the multi-objective evaluation, the analytic hierarchy process is utilized, and the joint optimization is achieved by combining a region contraction algorithm with stochastic programming. The proposed methodology is validated on an IES featuring various heating devices, incorporating uncertainties in both wind and solar energy. The results indicate that the absorption heat pump-based scheme achieves superior energy-saving performance, achieving an energy rate of 0.4724. Additionally, the compression heat pump-based scheme exhibits excellent economic efficiency and environmental sustainability, with a cost of energy of 0.3639 and a renewable fraction of 0.5536.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2024.121543</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>absorption ; algorithms ; Bi-level optimization model ; energy ; energy conservation ; environmental sustainability ; heat ; Integrated energy system ; Multi-objective optimization ; Optimum sizing and operation ; solar energy ; solar radiation ; Stochastic multi-scenario optimization ; uncertainty ; Weibull statistics ; wind speed</subject><ispartof>Renewable energy, 2024-12, Vol.237, p.121543, Article 121543</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-77a1bb78d8ba116a28ad19483471d8995472bfbf3c0edfb89039e2963f41be183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2024.121543$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Junjie, Xia</creatorcontrib><creatorcontrib>Xiang, Gao</creatorcontrib><creatorcontrib>Lei, Zheng</creatorcontrib><creatorcontrib>Dengwei, Jing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Liejin, Guo</creatorcontrib><title>Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems</title><title>Renewable energy</title><description>The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering algorithm for renewable energy sources within a multi-objective, bi-level optimization framework. Specifically, the clearness index is employed to represent the stochastic distribution of solar radiation intensity by beta distribution, while wind speed uncertainty is modeled seasonally using the Weibull distribution. Monte Carlo sampling with synchronous back substitution is applied for scenario generation and reduction of solar radiation and wind speed. To address the multi-objective evaluation, the analytic hierarchy process is utilized, and the joint optimization is achieved by combining a region contraction algorithm with stochastic programming. The proposed methodology is validated on an IES featuring various heating devices, incorporating uncertainties in both wind and solar energy. The results indicate that the absorption heat pump-based scheme achieves superior energy-saving performance, achieving an energy rate of 0.4724. Additionally, the compression heat pump-based scheme exhibits excellent economic efficiency and environmental sustainability, with a cost of energy of 0.3639 and a renewable fraction of 0.5536.</description><subject>absorption</subject><subject>algorithms</subject><subject>Bi-level optimization model</subject><subject>energy</subject><subject>energy conservation</subject><subject>environmental sustainability</subject><subject>heat</subject><subject>Integrated energy system</subject><subject>Multi-objective optimization</subject><subject>Optimum sizing and operation</subject><subject>solar energy</subject><subject>solar radiation</subject><subject>Stochastic multi-scenario optimization</subject><subject>uncertainty</subject><subject>Weibull statistics</subject><subject>wind speed</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD9v3DAMxT00QNIk3yCDxi6-iLZsy0uBImj-AAEyJJkFSaYvPNjWVVRSXIB-9-rgzgUJcvnx4fEVxRXIDUhor3ebiEuuTSUrtYEKGlV_Kc5k38oSlIbT4ivzTkpodKfOij_PHhcbKZTOMg6CU_BvlhN5EfaJZvq0icIicqc3FB8ZtY4mSgcRRsFhslHYZRC_KY8xROHDvA_ZQBJMn7RsjxgtCbfRpqyfncXtQfCBE858UZyMdmK8_LfPi9fbny839-Xj093DzY_H0legU9l1Fpzr9KCdBWhtpe0AvdK16mDQfd-ornKjG2svcRid7mXdY9W39ajAIej6vPi26u5j-PWOnMxM7HGa7ILhnU0NTa2bTrYqo2pFfQzMEUezjzTbeDAgzTFhszNrwuaYsFkTzmff1zPMb3wQRsOecPE4UESfzBDo_wJ_AVIiizo</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Hua, Lin</creator><creator>Junjie, Xia</creator><creator>Xiang, Gao</creator><creator>Lei, Zheng</creator><creator>Dengwei, Jing</creator><creator>Zhang, Xiongwen</creator><creator>Liejin, Guo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202412</creationdate><title>Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems</title><author>Hua, Lin ; Junjie, Xia ; Xiang, Gao ; Lei, Zheng ; Dengwei, Jing ; Zhang, Xiongwen ; Liejin, Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-77a1bb78d8ba116a28ad19483471d8995472bfbf3c0edfb89039e2963f41be183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>algorithms</topic><topic>Bi-level optimization model</topic><topic>energy</topic><topic>energy conservation</topic><topic>environmental sustainability</topic><topic>heat</topic><topic>Integrated energy system</topic><topic>Multi-objective optimization</topic><topic>Optimum sizing and operation</topic><topic>solar energy</topic><topic>solar radiation</topic><topic>Stochastic multi-scenario optimization</topic><topic>uncertainty</topic><topic>Weibull statistics</topic><topic>wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Junjie, Xia</creatorcontrib><creatorcontrib>Xiang, Gao</creatorcontrib><creatorcontrib>Lei, Zheng</creatorcontrib><creatorcontrib>Dengwei, Jing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Liejin, Guo</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Lin</au><au>Junjie, Xia</au><au>Xiang, Gao</au><au>Lei, Zheng</au><au>Dengwei, Jing</au><au>Zhang, Xiongwen</au><au>Liejin, Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems</atitle><jtitle>Renewable energy</jtitle><date>2024-12</date><risdate>2024</risdate><volume>237</volume><spage>121543</spage><pages>121543-</pages><artnum>121543</artnum><issn>0960-1481</issn><abstract>The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering algorithm for renewable energy sources within a multi-objective, bi-level optimization framework. Specifically, the clearness index is employed to represent the stochastic distribution of solar radiation intensity by beta distribution, while wind speed uncertainty is modeled seasonally using the Weibull distribution. Monte Carlo sampling with synchronous back substitution is applied for scenario generation and reduction of solar radiation and wind speed. To address the multi-objective evaluation, the analytic hierarchy process is utilized, and the joint optimization is achieved by combining a region contraction algorithm with stochastic programming. The proposed methodology is validated on an IES featuring various heating devices, incorporating uncertainties in both wind and solar energy. The results indicate that the absorption heat pump-based scheme achieves superior energy-saving performance, achieving an energy rate of 0.4724. Additionally, the compression heat pump-based scheme exhibits excellent economic efficiency and environmental sustainability, with a cost of energy of 0.3639 and a renewable fraction of 0.5536.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.121543</doi></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-12, Vol.237, p.121543, Article 121543
issn 0960-1481
language eng
recordid cdi_proquest_miscellaneous_3153857064
source Elsevier ScienceDirect Journals
subjects absorption
algorithms
Bi-level optimization model
energy
energy conservation
environmental sustainability
heat
Integrated energy system
Multi-objective optimization
Optimum sizing and operation
solar energy
solar radiation
Stochastic multi-scenario optimization
uncertainty
Weibull statistics
wind speed
title Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario-based%20stochastic%20optimization%20on%20the%20variability%20of%20solar%20and%20wind%20for%20component%20sizing%20of%20integrated%20energy%20systems&rft.jtitle=Renewable%20energy&rft.au=Hua,%20Lin&rft.date=2024-12&rft.volume=237&rft.spage=121543&rft.pages=121543-&rft.artnum=121543&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2024.121543&rft_dat=%3Cproquest_cross%3E3153857064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153857064&rft_id=info:pmid/&rft_els_id=S0960148124016112&rfr_iscdi=true