Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection

Summer low-temperature in Northeast China (NEC) could cause local grain reduction. Recent studies have highlighted a notable increase in low-surface air temperature (SAT) events during June in NEC, which diverges significantly from the patterns observed in July, August, and the overall summer averag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2024-10, Vol.62 (10), p.9843-9860
Hauptverfasser: Li, Hua, Yan, Yuhan, He, Shengping, Yuan, Xing, Zhou, Botao, Wang, Huijun, Xu, Zhiqing, Zhen, Linfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9860
container_issue 10
container_start_page 9843
container_title Climate dynamics
container_volume 62
creator Li, Hua
Yan, Yuhan
He, Shengping
Yuan, Xing
Zhou, Botao
Wang, Huijun
Xu, Zhiqing
Zhen, Linfeng
description Summer low-temperature in Northeast China (NEC) could cause local grain reduction. Recent studies have highlighted a notable increase in low-surface air temperature (SAT) events during June in NEC, which diverges significantly from the patterns observed in July, August, and the overall summer average. An analysis of June SAT over NEC from 1961 to 2020 reveals an interdecadal shift around 2003, characterized by decreased periodicity and increased interannual variability. This study investigates the influence of sea surface temperature anomalies (SSTAs) in the North Atlantic during the preceding February on this shift. It is found that the North Atlantic tripole SSTAs (NAT_SST) has a significant impact on June SAT in NEC post-2003. A proposed mechanism is that February NAT_SST can maintain the tripole anomalies into May-June, and inducing SSTAs over the tropical eastern Pacific (SST_EP) after 2003. Both observational and model simulation results support that NAT_SST influences June SAT in NEC through a wave train originating from the North Atlantic, while SST_EP affects SAT in NEC via the Circumglobal teleconnection and British-Baikal corridor-like patterns. The combined effects of May-June NAT_SST and SST_EP resonate to amplify June SAT anomalies over NEC, enhancing both the amplitude of SAT anomalies and interannual variability. Meanwhile, the periodicity of June SAT in NEC shifts to a 2–4 years cycle, aligning with the post-2003 alternation of NAT_SST. This contrasts with the period before 2002, where the relationship between February NAT_SST and May-June SST_EP was inverse, offsets the effects of the two SSTAs.
doi_str_mv 10.1007/s00382-024-07425-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153856887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153856887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-874279516f39fa7ce17375008a39238188bbf818ed5d54436bb07be1d33e78de3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-AU8BL15ak65OJ31cBj9WFr3oOaTT1U6WnmRM0gvzS_y71m4rwh4WAgXF8z5UeBl7LcU7KYR-X4QA0zai7Rqhu1Y1_RO2kx3QygzdU7YTA4hGK62esxel3Aghu163O_b7KlbME3o3uYX7g4s_sfAQ6dHexbjS-tbl4MawhHrmaeZf1oi84vFEQF0z8nSLmX9NuR7Qlcr3hxAdCabV48THM_-nL4cw13s7kVuAX9bFxRo8CRf0KUb0NaT4kj2b3VLw1d95wX58_PB9_7m5_vbpan953fgWoDaGPqsHJfsZhtlpj1KDVkIYB0MLRhozjjMNnNSkug76cRR6RDkBoDYTwgV7u3lPOf1asVR7DMXjQkdhWosFqcCo3hhN6JsH6E1ac6TriJJgetGpO6rdKJ9TKRlne8rh6PLZSmHvurJbV5a6svdd2Z5CsIUKwdRA_q9-JPUHmFmY_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113860457</pqid></control><display><type>article</type><title>Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection</title><source>SpringerLink Journals</source><creator>Li, Hua ; Yan, Yuhan ; He, Shengping ; Yuan, Xing ; Zhou, Botao ; Wang, Huijun ; Xu, Zhiqing ; Zhen, Linfeng</creator><creatorcontrib>Li, Hua ; Yan, Yuhan ; He, Shengping ; Yuan, Xing ; Zhou, Botao ; Wang, Huijun ; Xu, Zhiqing ; Zhen, Linfeng</creatorcontrib><description>Summer low-temperature in Northeast China (NEC) could cause local grain reduction. Recent studies have highlighted a notable increase in low-surface air temperature (SAT) events during June in NEC, which diverges significantly from the patterns observed in July, August, and the overall summer average. An analysis of June SAT over NEC from 1961 to 2020 reveals an interdecadal shift around 2003, characterized by decreased periodicity and increased interannual variability. This study investigates the influence of sea surface temperature anomalies (SSTAs) in the North Atlantic during the preceding February on this shift. It is found that the North Atlantic tripole SSTAs (NAT_SST) has a significant impact on June SAT in NEC post-2003. A proposed mechanism is that February NAT_SST can maintain the tripole anomalies into May-June, and inducing SSTAs over the tropical eastern Pacific (SST_EP) after 2003. Both observational and model simulation results support that NAT_SST influences June SAT in NEC through a wave train originating from the North Atlantic, while SST_EP affects SAT in NEC via the Circumglobal teleconnection and British-Baikal corridor-like patterns. The combined effects of May-June NAT_SST and SST_EP resonate to amplify June SAT anomalies over NEC, enhancing both the amplitude of SAT anomalies and interannual variability. Meanwhile, the periodicity of June SAT in NEC shifts to a 2–4 years cycle, aligning with the post-2003 alternation of NAT_SST. This contrasts with the period before 2002, where the relationship between February NAT_SST and May-June SST_EP was inverse, offsets the effects of the two SSTAs.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07425-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural production ; Air temperature ; Anomalies ; China ; Climatology ; Cold ; Drought ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Ice ; Influence ; Information science ; Interannual variability ; Low temperature ; Oceanography ; Original Article ; Periodicity ; Sea surface temperature ; Sea surface temperature anomalies ; simulation models ; Summer ; Surface temperature ; surface water temperature ; Surface-air temperature relationships ; Teleconnections ; Temperature anomalies ; Variability ; Water resources ; Wave packets ; Wave trains</subject><ispartof>Climate dynamics, 2024-10, Vol.62 (10), p.9843-9860</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-874279516f39fa7ce17375008a39238188bbf818ed5d54436bb07be1d33e78de3</cites><orcidid>0000-0003-3178-0997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07425-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07425-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Yan, Yuhan</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Yuan, Xing</creatorcontrib><creatorcontrib>Zhou, Botao</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Xu, Zhiqing</creatorcontrib><creatorcontrib>Zhen, Linfeng</creatorcontrib><title>Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Summer low-temperature in Northeast China (NEC) could cause local grain reduction. Recent studies have highlighted a notable increase in low-surface air temperature (SAT) events during June in NEC, which diverges significantly from the patterns observed in July, August, and the overall summer average. An analysis of June SAT over NEC from 1961 to 2020 reveals an interdecadal shift around 2003, characterized by decreased periodicity and increased interannual variability. This study investigates the influence of sea surface temperature anomalies (SSTAs) in the North Atlantic during the preceding February on this shift. It is found that the North Atlantic tripole SSTAs (NAT_SST) has a significant impact on June SAT in NEC post-2003. A proposed mechanism is that February NAT_SST can maintain the tripole anomalies into May-June, and inducing SSTAs over the tropical eastern Pacific (SST_EP) after 2003. Both observational and model simulation results support that NAT_SST influences June SAT in NEC through a wave train originating from the North Atlantic, while SST_EP affects SAT in NEC via the Circumglobal teleconnection and British-Baikal corridor-like patterns. The combined effects of May-June NAT_SST and SST_EP resonate to amplify June SAT anomalies over NEC, enhancing both the amplitude of SAT anomalies and interannual variability. Meanwhile, the periodicity of June SAT in NEC shifts to a 2–4 years cycle, aligning with the post-2003 alternation of NAT_SST. This contrasts with the period before 2002, where the relationship between February NAT_SST and May-June SST_EP was inverse, offsets the effects of the two SSTAs.</description><subject>Agricultural production</subject><subject>Air temperature</subject><subject>Anomalies</subject><subject>China</subject><subject>Climatology</subject><subject>Cold</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Ice</subject><subject>Influence</subject><subject>Information science</subject><subject>Interannual variability</subject><subject>Low temperature</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Periodicity</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>simulation models</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>surface water temperature</subject><subject>Surface-air temperature relationships</subject><subject>Teleconnections</subject><subject>Temperature anomalies</subject><subject>Variability</subject><subject>Water resources</subject><subject>Wave packets</subject><subject>Wave trains</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK7-AU8BL15ak65OJ31cBj9WFr3oOaTT1U6WnmRM0gvzS_y71m4rwh4WAgXF8z5UeBl7LcU7KYR-X4QA0zai7Rqhu1Y1_RO2kx3QygzdU7YTA4hGK62esxel3Aghu163O_b7KlbME3o3uYX7g4s_sfAQ6dHexbjS-tbl4MawhHrmaeZf1oi84vFEQF0z8nSLmX9NuR7Qlcr3hxAdCabV48THM_-nL4cw13s7kVuAX9bFxRo8CRf0KUb0NaT4kj2b3VLw1d95wX58_PB9_7m5_vbpan953fgWoDaGPqsHJfsZhtlpj1KDVkIYB0MLRhozjjMNnNSkug76cRR6RDkBoDYTwgV7u3lPOf1asVR7DMXjQkdhWosFqcCo3hhN6JsH6E1ac6TriJJgetGpO6rdKJ9TKRlne8rh6PLZSmHvurJbV5a6svdd2Z5CsIUKwdRA_q9-JPUHmFmY_w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Hua</creator><creator>Yan, Yuhan</creator><creator>He, Shengping</creator><creator>Yuan, Xing</creator><creator>Zhou, Botao</creator><creator>Wang, Huijun</creator><creator>Xu, Zhiqing</creator><creator>Zhen, Linfeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3178-0997</orcidid></search><sort><creationdate>20241001</creationdate><title>Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection</title><author>Li, Hua ; Yan, Yuhan ; He, Shengping ; Yuan, Xing ; Zhou, Botao ; Wang, Huijun ; Xu, Zhiqing ; Zhen, Linfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-874279516f39fa7ce17375008a39238188bbf818ed5d54436bb07be1d33e78de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural production</topic><topic>Air temperature</topic><topic>Anomalies</topic><topic>China</topic><topic>Climatology</topic><topic>Cold</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Ice</topic><topic>Influence</topic><topic>Information science</topic><topic>Interannual variability</topic><topic>Low temperature</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Periodicity</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>simulation models</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>surface water temperature</topic><topic>Surface-air temperature relationships</topic><topic>Teleconnections</topic><topic>Temperature anomalies</topic><topic>Variability</topic><topic>Water resources</topic><topic>Wave packets</topic><topic>Wave trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Yan, Yuhan</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Yuan, Xing</creatorcontrib><creatorcontrib>Zhou, Botao</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><creatorcontrib>Xu, Zhiqing</creatorcontrib><creatorcontrib>Zhen, Linfeng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hua</au><au>Yan, Yuhan</au><au>He, Shengping</au><au>Yuan, Xing</au><au>Zhou, Botao</au><au>Wang, Huijun</au><au>Xu, Zhiqing</au><au>Zhen, Linfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>62</volume><issue>10</issue><spage>9843</spage><epage>9860</epage><pages>9843-9860</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Summer low-temperature in Northeast China (NEC) could cause local grain reduction. Recent studies have highlighted a notable increase in low-surface air temperature (SAT) events during June in NEC, which diverges significantly from the patterns observed in July, August, and the overall summer average. An analysis of June SAT over NEC from 1961 to 2020 reveals an interdecadal shift around 2003, characterized by decreased periodicity and increased interannual variability. This study investigates the influence of sea surface temperature anomalies (SSTAs) in the North Atlantic during the preceding February on this shift. It is found that the North Atlantic tripole SSTAs (NAT_SST) has a significant impact on June SAT in NEC post-2003. A proposed mechanism is that February NAT_SST can maintain the tripole anomalies into May-June, and inducing SSTAs over the tropical eastern Pacific (SST_EP) after 2003. Both observational and model simulation results support that NAT_SST influences June SAT in NEC through a wave train originating from the North Atlantic, while SST_EP affects SAT in NEC via the Circumglobal teleconnection and British-Baikal corridor-like patterns. The combined effects of May-June NAT_SST and SST_EP resonate to amplify June SAT anomalies over NEC, enhancing both the amplitude of SAT anomalies and interannual variability. Meanwhile, the periodicity of June SAT in NEC shifts to a 2–4 years cycle, aligning with the post-2003 alternation of NAT_SST. This contrasts with the period before 2002, where the relationship between February NAT_SST and May-June SST_EP was inverse, offsets the effects of the two SSTAs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07425-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3178-0997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2024-10, Vol.62 (10), p.9843-9860
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_3153856887
source SpringerLink Journals
subjects Agricultural production
Air temperature
Anomalies
China
Climatology
Cold
Drought
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Ice
Influence
Information science
Interannual variability
Low temperature
Oceanography
Original Article
Periodicity
Sea surface temperature
Sea surface temperature anomalies
simulation models
Summer
Surface temperature
surface water temperature
Surface-air temperature relationships
Teleconnections
Temperature anomalies
Variability
Water resources
Wave packets
Wave trains
title Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20changes%20in%20interannual%20variability%20of%20June%20temperature%20over%20Northeast%20China%20induced%20by%20decadal%20shifts%20in%20the%20North%20Atlantic%20teleconnection&rft.jtitle=Climate%20dynamics&rft.au=Li,%20Hua&rft.date=2024-10-01&rft.volume=62&rft.issue=10&rft.spage=9843&rft.epage=9860&rft.pages=9843-9860&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07425-6&rft_dat=%3Cproquest_cross%3E3153856887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113860457&rft_id=info:pmid/&rfr_iscdi=true