Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)

Rice is a critical staple crop that feeds more than half of the world’s population. Still, its production confronts various biotic risks, notably the severe bacterial blight disease produced by Xanthomonas oryzae . Understanding the possible effects of climate change on the geographic distribution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2024-11, Vol.196 (11), p.1064-1064, Article 1064
Hauptverfasser: Khalaf, Sameh M. H., Alqahtani, Monerah S. M., Ali, Mohamed R. M., Abdelalim, Ibrahim T. I., Hodhod, Mohamed S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 11
container_start_page 1064
container_title Environmental monitoring and assessment
container_volume 196
creator Khalaf, Sameh M. H.
Alqahtani, Monerah S. M.
Ali, Mohamed R. M.
Abdelalim, Ibrahim T. I.
Hodhod, Mohamed S.
description Rice is a critical staple crop that feeds more than half of the world’s population. Still, its production confronts various biotic risks, notably the severe bacterial blight disease produced by Xanthomonas oryzae . Understanding the possible effects of climate change on the geographic distribution of this virus is critical to ensuring food security. This work used ecological niche modeling and the Maxent algorithm to create future risk maps for the range of X. oryzae under several climate change scenarios between 2050 and 2070. The model was trained using 93 occurrence records of X. oryzae and five critical bioclimatic variables. It has an excellent predictive performance, with an AUC of 0.889. The results show that X. oryzae ’s potential geographic range and habitat suitability are expected to increase significantly under low (RCP2.6) and high (RCP8.5) emission scenarios. Key climatic drivers allowing this development include increased yearly precipitation, precipitation during the wettest quarter, and the wettest quarter’s mean temperature. These findings are consistent with broader research revealing that climate change is allowing many plant diseases and other dangerous microbes to spread across the globe. Integrating these spatial predictions with data on host susceptibility, agricultural practices, and socioeconomic vulnerabilities can help to improve targeted surveillance, preventative, and management methods for reducing the growing threat of bacterial blight to rice production. Proactive, multidisciplinary efforts to manage the changing disease dynamics caused by climate change will be critical to assuring global food security in the future decades. Graphical Abstract
doi_str_mv 10.1007/s10661-024-13215-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153847832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117775365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-aae270a72c11bac4415a1abea0d980195d9e3ba60ff76a2d8d9f655c49b965b43</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhBVggS2ymC4N_4r8lqkoZqYgFILGLbhwn45LEg50swqv0ZXE7BaQuEKsr637nnGsdhF4y-oZRqt9mRpVihPKKMMGZJOYR2jCpBeFW2sdoQ5nSRAllT9CznK8ppVZX9ik6EbZi2lizQTcfY-uHMPXYDWGE2ZPkhzJa3A-xgQGnkL_jEQ4Zx648nMcNuNmnUHbNEPr9jB0suQiaFX-Dad7HMU5Q8LT-BI-3u7wPK4yAmeX8DC_5Nqz3sU9w2AdXbMLUxVSyQ5xwXvPsR7y93H0-e46edDBk_-J-nqKv7y--nH8gV58ud-fvrojjxs4EwHNNQXPHWLmtqpgEBo0H2lpDmZWt9aIBRbtOK-CtaW2npHSVbaySTSVO0fboe0jxx-LzXI8hOz8MMPm45FowKUyljeD_gTKtWGWEKOjrB-h1XNJUPnJHaS2FkoXiR8qlmHPyXX1IpYe01ozWty3Xx5br0nJ913JtiujVvfXSjL79I_ldawHEEchlNfU-_c3-h-0vKlmzMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117775365</pqid></control><display><type>article</type><title>Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Khalaf, Sameh M. H. ; Alqahtani, Monerah S. M. ; Ali, Mohamed R. M. ; Abdelalim, Ibrahim T. I. ; Hodhod, Mohamed S.</creator><creatorcontrib>Khalaf, Sameh M. H. ; Alqahtani, Monerah S. M. ; Ali, Mohamed R. M. ; Abdelalim, Ibrahim T. I. ; Hodhod, Mohamed S.</creatorcontrib><description>Rice is a critical staple crop that feeds more than half of the world’s population. Still, its production confronts various biotic risks, notably the severe bacterial blight disease produced by Xanthomonas oryzae . Understanding the possible effects of climate change on the geographic distribution of this virus is critical to ensuring food security. This work used ecological niche modeling and the Maxent algorithm to create future risk maps for the range of X. oryzae under several climate change scenarios between 2050 and 2070. The model was trained using 93 occurrence records of X. oryzae and five critical bioclimatic variables. It has an excellent predictive performance, with an AUC of 0.889. The results show that X. oryzae ’s potential geographic range and habitat suitability are expected to increase significantly under low (RCP2.6) and high (RCP8.5) emission scenarios. Key climatic drivers allowing this development include increased yearly precipitation, precipitation during the wettest quarter, and the wettest quarter’s mean temperature. These findings are consistent with broader research revealing that climate change is allowing many plant diseases and other dangerous microbes to spread across the globe. Integrating these spatial predictions with data on host susceptibility, agricultural practices, and socioeconomic vulnerabilities can help to improve targeted surveillance, preventative, and management methods for reducing the growing threat of bacterial blight to rice production. Proactive, multidisciplinary efforts to manage the changing disease dynamics caused by climate change will be critical to assuring global food security in the future decades. Graphical Abstract</description><identifier>ISSN: 0167-6369</identifier><identifier>ISSN: 1573-2959</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-024-13215-8</identifier><identifier>PMID: 39417898</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agricultural practices ; Algorithms ; atmospheric precipitation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bacteria ; Bioclimatology ; Blight ; Climate ; Climate Change ; Climate change scenarios ; Climate effects ; Climate models ; Climate prediction ; Crop production ; Earth and Environmental Science ; Ecological distribution ; Ecological effects ; Ecological niches ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Environmental Monitoring ; Food security ; Geographic Information Systems ; Geographical distribution ; Geographical information systems ; Host plants ; Information systems ; Management methods ; Mean temperatures ; Modelling ; monitoring ; Monitoring/Environmental Analysis ; Niches ; Oryza - microbiology ; Performance prediction ; Plant diseases ; Plant Diseases - microbiology ; Plant Diseases - statistics &amp; numerical data ; Plant layout ; Precipitation ; Rice ; risk ; staple crops ; temperature ; viruses ; Xanthomonas ; Xanthomonas oryzae ; Xanthomonas oryzae pv. oryzae</subject><ispartof>Environmental monitoring and assessment, 2024-11, Vol.196 (11), p.1064-1064, Article 1064</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-aae270a72c11bac4415a1abea0d980195d9e3ba60ff76a2d8d9f655c49b965b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-024-13215-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-024-13215-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39417898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalaf, Sameh M. H.</creatorcontrib><creatorcontrib>Alqahtani, Monerah S. M.</creatorcontrib><creatorcontrib>Ali, Mohamed R. M.</creatorcontrib><creatorcontrib>Abdelalim, Ibrahim T. I.</creatorcontrib><creatorcontrib>Hodhod, Mohamed S.</creatorcontrib><title>Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>Rice is a critical staple crop that feeds more than half of the world’s population. Still, its production confronts various biotic risks, notably the severe bacterial blight disease produced by Xanthomonas oryzae . Understanding the possible effects of climate change on the geographic distribution of this virus is critical to ensuring food security. This work used ecological niche modeling and the Maxent algorithm to create future risk maps for the range of X. oryzae under several climate change scenarios between 2050 and 2070. The model was trained using 93 occurrence records of X. oryzae and five critical bioclimatic variables. It has an excellent predictive performance, with an AUC of 0.889. The results show that X. oryzae ’s potential geographic range and habitat suitability are expected to increase significantly under low (RCP2.6) and high (RCP8.5) emission scenarios. Key climatic drivers allowing this development include increased yearly precipitation, precipitation during the wettest quarter, and the wettest quarter’s mean temperature. These findings are consistent with broader research revealing that climate change is allowing many plant diseases and other dangerous microbes to spread across the globe. Integrating these spatial predictions with data on host susceptibility, agricultural practices, and socioeconomic vulnerabilities can help to improve targeted surveillance, preventative, and management methods for reducing the growing threat of bacterial blight to rice production. Proactive, multidisciplinary efforts to manage the changing disease dynamics caused by climate change will be critical to assuring global food security in the future decades. Graphical Abstract</description><subject>Agricultural practices</subject><subject>Algorithms</subject><subject>atmospheric precipitation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bacteria</subject><subject>Bioclimatology</subject><subject>Blight</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate change scenarios</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Crop production</subject><subject>Earth and Environmental Science</subject><subject>Ecological distribution</subject><subject>Ecological effects</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental Monitoring</subject><subject>Food security</subject><subject>Geographic Information Systems</subject><subject>Geographical distribution</subject><subject>Geographical information systems</subject><subject>Host plants</subject><subject>Information systems</subject><subject>Management methods</subject><subject>Mean temperatures</subject><subject>Modelling</subject><subject>monitoring</subject><subject>Monitoring/Environmental Analysis</subject><subject>Niches</subject><subject>Oryza - microbiology</subject><subject>Performance prediction</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - statistics &amp; numerical data</subject><subject>Plant layout</subject><subject>Precipitation</subject><subject>Rice</subject><subject>risk</subject><subject>staple crops</subject><subject>temperature</subject><subject>viruses</subject><subject>Xanthomonas</subject><subject>Xanthomonas oryzae</subject><subject>Xanthomonas oryzae pv. oryzae</subject><issn>0167-6369</issn><issn>1573-2959</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhBVggS2ymC4N_4r8lqkoZqYgFILGLbhwn45LEg50swqv0ZXE7BaQuEKsr637nnGsdhF4y-oZRqt9mRpVihPKKMMGZJOYR2jCpBeFW2sdoQ5nSRAllT9CznK8ppVZX9ik6EbZi2lizQTcfY-uHMPXYDWGE2ZPkhzJa3A-xgQGnkL_jEQ4Zx648nMcNuNmnUHbNEPr9jB0suQiaFX-Dad7HMU5Q8LT-BI-3u7wPK4yAmeX8DC_5Nqz3sU9w2AdXbMLUxVSyQ5xwXvPsR7y93H0-e46edDBk_-J-nqKv7y--nH8gV58ud-fvrojjxs4EwHNNQXPHWLmtqpgEBo0H2lpDmZWt9aIBRbtOK-CtaW2npHSVbaySTSVO0fboe0jxx-LzXI8hOz8MMPm45FowKUyljeD_gTKtWGWEKOjrB-h1XNJUPnJHaS2FkoXiR8qlmHPyXX1IpYe01ozWty3Xx5br0nJ913JtiujVvfXSjL79I_ldawHEEchlNfU-_c3-h-0vKlmzMQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Khalaf, Sameh M. H.</creator><creator>Alqahtani, Monerah S. M.</creator><creator>Ali, Mohamed R. M.</creator><creator>Abdelalim, Ibrahim T. I.</creator><creator>Hodhod, Mohamed S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241101</creationdate><title>Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)</title><author>Khalaf, Sameh M. H. ; Alqahtani, Monerah S. M. ; Ali, Mohamed R. M. ; Abdelalim, Ibrahim T. I. ; Hodhod, Mohamed S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-aae270a72c11bac4415a1abea0d980195d9e3ba60ff76a2d8d9f655c49b965b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural practices</topic><topic>Algorithms</topic><topic>atmospheric precipitation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bacteria</topic><topic>Bioclimatology</topic><topic>Blight</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate change scenarios</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Crop production</topic><topic>Earth and Environmental Science</topic><topic>Ecological distribution</topic><topic>Ecological effects</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental Monitoring</topic><topic>Food security</topic><topic>Geographic Information Systems</topic><topic>Geographical distribution</topic><topic>Geographical information systems</topic><topic>Host plants</topic><topic>Information systems</topic><topic>Management methods</topic><topic>Mean temperatures</topic><topic>Modelling</topic><topic>monitoring</topic><topic>Monitoring/Environmental Analysis</topic><topic>Niches</topic><topic>Oryza - microbiology</topic><topic>Performance prediction</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - statistics &amp; numerical data</topic><topic>Plant layout</topic><topic>Precipitation</topic><topic>Rice</topic><topic>risk</topic><topic>staple crops</topic><topic>temperature</topic><topic>viruses</topic><topic>Xanthomonas</topic><topic>Xanthomonas oryzae</topic><topic>Xanthomonas oryzae pv. oryzae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalaf, Sameh M. H.</creatorcontrib><creatorcontrib>Alqahtani, Monerah S. M.</creatorcontrib><creatorcontrib>Ali, Mohamed R. M.</creatorcontrib><creatorcontrib>Abdelalim, Ibrahim T. I.</creatorcontrib><creatorcontrib>Hodhod, Mohamed S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalaf, Sameh M. H.</au><au>Alqahtani, Monerah S. M.</au><au>Ali, Mohamed R. M.</au><au>Abdelalim, Ibrahim T. I.</au><au>Hodhod, Mohamed S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>196</volume><issue>11</issue><spage>1064</spage><epage>1064</epage><pages>1064-1064</pages><artnum>1064</artnum><issn>0167-6369</issn><issn>1573-2959</issn><eissn>1573-2959</eissn><abstract>Rice is a critical staple crop that feeds more than half of the world’s population. Still, its production confronts various biotic risks, notably the severe bacterial blight disease produced by Xanthomonas oryzae . Understanding the possible effects of climate change on the geographic distribution of this virus is critical to ensuring food security. This work used ecological niche modeling and the Maxent algorithm to create future risk maps for the range of X. oryzae under several climate change scenarios between 2050 and 2070. The model was trained using 93 occurrence records of X. oryzae and five critical bioclimatic variables. It has an excellent predictive performance, with an AUC of 0.889. The results show that X. oryzae ’s potential geographic range and habitat suitability are expected to increase significantly under low (RCP2.6) and high (RCP8.5) emission scenarios. Key climatic drivers allowing this development include increased yearly precipitation, precipitation during the wettest quarter, and the wettest quarter’s mean temperature. These findings are consistent with broader research revealing that climate change is allowing many plant diseases and other dangerous microbes to spread across the globe. Integrating these spatial predictions with data on host susceptibility, agricultural practices, and socioeconomic vulnerabilities can help to improve targeted surveillance, preventative, and management methods for reducing the growing threat of bacterial blight to rice production. Proactive, multidisciplinary efforts to manage the changing disease dynamics caused by climate change will be critical to assuring global food security in the future decades. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39417898</pmid><doi>10.1007/s10661-024-13215-8</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6369
ispartof Environmental monitoring and assessment, 2024-11, Vol.196 (11), p.1064-1064, Article 1064
issn 0167-6369
1573-2959
1573-2959
language eng
recordid cdi_proquest_miscellaneous_3153847832
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agricultural practices
Algorithms
atmospheric precipitation
Atmospheric Protection/Air Quality Control/Air Pollution
Bacteria
Bioclimatology
Blight
Climate
Climate Change
Climate change scenarios
Climate effects
Climate models
Climate prediction
Crop production
Earth and Environmental Science
Ecological distribution
Ecological effects
Ecological niches
Ecology
Ecotoxicology
Environment
Environmental Management
Environmental Monitoring
Food security
Geographic Information Systems
Geographical distribution
Geographical information systems
Host plants
Information systems
Management methods
Mean temperatures
Modelling
monitoring
Monitoring/Environmental Analysis
Niches
Oryza - microbiology
Performance prediction
Plant diseases
Plant Diseases - microbiology
Plant Diseases - statistics & numerical data
Plant layout
Precipitation
Rice
risk
staple crops
temperature
viruses
Xanthomonas
Xanthomonas oryzae
Xanthomonas oryzae pv. oryzae
title Modeling climate-related global risk maps of rice bacterial blight caused by Xanthomonas oryzae (Ishiyama 1922) using geographical information system (GIS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20climate-related%20global%20risk%20maps%20of%20rice%20bacterial%20blight%20caused%20by%20Xanthomonas%20oryzae%20(Ishiyama%201922)%20using%20geographical%20information%20system%20(GIS)&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Khalaf,%20Sameh%20M.%20H.&rft.date=2024-11-01&rft.volume=196&rft.issue=11&rft.spage=1064&rft.epage=1064&rft.pages=1064-1064&rft.artnum=1064&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-024-13215-8&rft_dat=%3Cproquest_cross%3E3117775365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117775365&rft_id=info:pmid/39417898&rfr_iscdi=true