Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption
By controlling the Ni/Co ratio in precursor, the microstructure of MOFs with tunable morphology are obtained. The derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-09, Vol.646, p.265-274 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 265 |
container_title | Journal of colloid and interface science |
container_volume | 646 |
creator | Hou, Wenxuan Peng, Kang Li, Shikuo Huang, Fangzhi Wang, Baojun Yu, Xinyao Yang, Hengxiu Zhang, Hui |
description | By controlling the Ni/Co ratio in precursor, the microstructure of MOFs with tunable morphology are obtained. The derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. The flower-like microstructure allows more electromagnetic waves to enter the absorber, which is conducive to improving impedance matching, extending the transmission path of electromagnetic waves, and thus losing electromagnetic energy. In addition, the uniformly dispersed CoNi nanoparticles are conducive to improving the magnetic coupling strength, and the resulting heterogeneous interface enhances the interface polarization.
[Display omitted]
In order to acquire exceptional electromagnetic wave absorption properties, the microstructure design and component modification of composites are essential. Metal-organic frameworks (MOFs), due to the unique metal–organic crystalline coordination, tunable morphology, high surface area, and well-defined pores, have been regarded as promising electromagnetic wave absorption materials precursors. However, the inadequate contact abilities between adjacent MOFs nanoparticles endow it with undesirable electromagnetic wave dissipation capacity at a low filler loading, which is a great challenge to break size effect of nanoparticles to achieve efficient absorption. Herein, NiCo-MOFs derived N-doped carbon nanotubes encapsulated with NiCo nanoparticles anchored on flowers-like composites (denoted as NCNT/NiCo/C) were successfully prepared through facile hydrothermal method followed by thermal chemical vapor deposition with melamine-assisted catalyst. By controlling the Ni/Co ratio in precursor, the tunable morphology and microstructure of MOFs are achieved. Most importantly, the derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. And notably, the NCNT/NiCo/C composite delivers excellent electromagnetic wave absorption performance with minimum reflection loss of −66.1 dB and wide effective absorption bandwidth up to 4.64 GHz when the Ni/Co ratio is 1:1. This work provides a novel method for the preparation of morphology controllable MOFs-derived composites and realizes high-performance electromagnetic wave absorption properties. |
doi_str_mv | 10.1016/j.jcis.2023.05.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153847235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723008408</els_id><sourcerecordid>2815247140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d1da19fbf9e6226f6a16ef9b879f37569b90ea0d3bdce4476c57bd68146c71de3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhBTggH7kk2EkcxxIXtKWAVNoLnC3HHm-9JHawnV3xTLwkXm3pES4zh_nmP_wfQq8pqSmh_bt9vdcu1Q1p2pqwmnTiCdpQIljFKWmfog0hDa0EF_wCvUhpTwiljInn6KLlVPSMkA36fQXJ7bzzO2yncIRYTe4H4K9316kyEN0BDL6tTFjK1iqOwWOvfMjrCAmD12pJ66Ryuc5q5yE7jW_dNmAd5iUklwt1dPkez-uUXXUPGWJwvkyrdLnZEDFY67QDnzFMoHMMj0lHdQCsxhTikl3wL9Ezq6YErx72Jfp-_fHb9nN1c_fpy_bDTaXbQeTKUKOosKMV0DdNb3tFe7BiHLiwLWe9GAUBRUw7Gg1dx3vN-Gj6gXa95tRAe4nennOXGH6ukLKcXdIwTcpDWJNsKWuHjjct-y_aDJQ1HacdKWhzRnUMKUWwcoluVvGXpESefMq9PPmUJ5-SMFl8lqc3D_nrOIN5fPkrsADvzwCUQg4OokynLjUYF0uZ0gT3r_w_-Uy2dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815247140</pqid></control><display><type>article</type><title>Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption</title><source>Elsevier ScienceDirect Journals</source><creator>Hou, Wenxuan ; Peng, Kang ; Li, Shikuo ; Huang, Fangzhi ; Wang, Baojun ; Yu, Xinyao ; Yang, Hengxiu ; Zhang, Hui</creator><creatorcontrib>Hou, Wenxuan ; Peng, Kang ; Li, Shikuo ; Huang, Fangzhi ; Wang, Baojun ; Yu, Xinyao ; Yang, Hengxiu ; Zhang, Hui</creatorcontrib><description>By controlling the Ni/Co ratio in precursor, the microstructure of MOFs with tunable morphology are obtained. The derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. The flower-like microstructure allows more electromagnetic waves to enter the absorber, which is conducive to improving impedance matching, extending the transmission path of electromagnetic waves, and thus losing electromagnetic energy. In addition, the uniformly dispersed CoNi nanoparticles are conducive to improving the magnetic coupling strength, and the resulting heterogeneous interface enhances the interface polarization.
[Display omitted]
In order to acquire exceptional electromagnetic wave absorption properties, the microstructure design and component modification of composites are essential. Metal-organic frameworks (MOFs), due to the unique metal–organic crystalline coordination, tunable morphology, high surface area, and well-defined pores, have been regarded as promising electromagnetic wave absorption materials precursors. However, the inadequate contact abilities between adjacent MOFs nanoparticles endow it with undesirable electromagnetic wave dissipation capacity at a low filler loading, which is a great challenge to break size effect of nanoparticles to achieve efficient absorption. Herein, NiCo-MOFs derived N-doped carbon nanotubes encapsulated with NiCo nanoparticles anchored on flowers-like composites (denoted as NCNT/NiCo/C) were successfully prepared through facile hydrothermal method followed by thermal chemical vapor deposition with melamine-assisted catalyst. By controlling the Ni/Co ratio in precursor, the tunable morphology and microstructure of MOFs are achieved. Most importantly, the derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. And notably, the NCNT/NiCo/C composite delivers excellent electromagnetic wave absorption performance with minimum reflection loss of −66.1 dB and wide effective absorption bandwidth up to 4.64 GHz when the Ni/Co ratio is 1:1. This work provides a novel method for the preparation of morphology controllable MOFs-derived composites and realizes high-performance electromagnetic wave absorption properties.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.05.049</identifier><identifier>PMID: 37196500</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>absorption ; carbon nanotubes ; catalysts ; Conduction loss ; electromagnetic radiation ; Electromagnetic wave absorption ; hot water treatment ; magnetism ; Metal-organic frameworks ; microstructure ; N-doped carbon nanotubes ; nanoparticles ; nanosheets ; surface area ; vapors</subject><ispartof>Journal of colloid and interface science, 2023-09, Vol.646, p.265-274</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d1da19fbf9e6226f6a16ef9b879f37569b90ea0d3bdce4476c57bd68146c71de3</citedby><cites>FETCH-LOGICAL-c389t-d1da19fbf9e6226f6a16ef9b879f37569b90ea0d3bdce4476c57bd68146c71de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979723008408$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37196500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Wenxuan</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Huang, Fangzhi</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Yu, Xinyao</creatorcontrib><creatorcontrib>Yang, Hengxiu</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><title>Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>By controlling the Ni/Co ratio in precursor, the microstructure of MOFs with tunable morphology are obtained. The derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. The flower-like microstructure allows more electromagnetic waves to enter the absorber, which is conducive to improving impedance matching, extending the transmission path of electromagnetic waves, and thus losing electromagnetic energy. In addition, the uniformly dispersed CoNi nanoparticles are conducive to improving the magnetic coupling strength, and the resulting heterogeneous interface enhances the interface polarization.
[Display omitted]
In order to acquire exceptional electromagnetic wave absorption properties, the microstructure design and component modification of composites are essential. Metal-organic frameworks (MOFs), due to the unique metal–organic crystalline coordination, tunable morphology, high surface area, and well-defined pores, have been regarded as promising electromagnetic wave absorption materials precursors. However, the inadequate contact abilities between adjacent MOFs nanoparticles endow it with undesirable electromagnetic wave dissipation capacity at a low filler loading, which is a great challenge to break size effect of nanoparticles to achieve efficient absorption. Herein, NiCo-MOFs derived N-doped carbon nanotubes encapsulated with NiCo nanoparticles anchored on flowers-like composites (denoted as NCNT/NiCo/C) were successfully prepared through facile hydrothermal method followed by thermal chemical vapor deposition with melamine-assisted catalyst. By controlling the Ni/Co ratio in precursor, the tunable morphology and microstructure of MOFs are achieved. Most importantly, the derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. And notably, the NCNT/NiCo/C composite delivers excellent electromagnetic wave absorption performance with minimum reflection loss of −66.1 dB and wide effective absorption bandwidth up to 4.64 GHz when the Ni/Co ratio is 1:1. This work provides a novel method for the preparation of morphology controllable MOFs-derived composites and realizes high-performance electromagnetic wave absorption properties.</description><subject>absorption</subject><subject>carbon nanotubes</subject><subject>catalysts</subject><subject>Conduction loss</subject><subject>electromagnetic radiation</subject><subject>Electromagnetic wave absorption</subject><subject>hot water treatment</subject><subject>magnetism</subject><subject>Metal-organic frameworks</subject><subject>microstructure</subject><subject>N-doped carbon nanotubes</subject><subject>nanoparticles</subject><subject>nanosheets</subject><subject>surface area</subject><subject>vapors</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhBTggH7kk2EkcxxIXtKWAVNoLnC3HHm-9JHawnV3xTLwkXm3pES4zh_nmP_wfQq8pqSmh_bt9vdcu1Q1p2pqwmnTiCdpQIljFKWmfog0hDa0EF_wCvUhpTwiljInn6KLlVPSMkA36fQXJ7bzzO2yncIRYTe4H4K9316kyEN0BDL6tTFjK1iqOwWOvfMjrCAmD12pJ66Ryuc5q5yE7jW_dNmAd5iUklwt1dPkez-uUXXUPGWJwvkyrdLnZEDFY67QDnzFMoHMMj0lHdQCsxhTikl3wL9Ezq6YErx72Jfp-_fHb9nN1c_fpy_bDTaXbQeTKUKOosKMV0DdNb3tFe7BiHLiwLWe9GAUBRUw7Gg1dx3vN-Gj6gXa95tRAe4nennOXGH6ukLKcXdIwTcpDWJNsKWuHjjct-y_aDJQ1HacdKWhzRnUMKUWwcoluVvGXpESefMq9PPmUJ5-SMFl8lqc3D_nrOIN5fPkrsADvzwCUQg4OokynLjUYF0uZ0gT3r_w_-Uy2dQ</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Hou, Wenxuan</creator><creator>Peng, Kang</creator><creator>Li, Shikuo</creator><creator>Huang, Fangzhi</creator><creator>Wang, Baojun</creator><creator>Yu, Xinyao</creator><creator>Yang, Hengxiu</creator><creator>Zhang, Hui</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230915</creationdate><title>Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption</title><author>Hou, Wenxuan ; Peng, Kang ; Li, Shikuo ; Huang, Fangzhi ; Wang, Baojun ; Yu, Xinyao ; Yang, Hengxiu ; Zhang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d1da19fbf9e6226f6a16ef9b879f37569b90ea0d3bdce4476c57bd68146c71de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>carbon nanotubes</topic><topic>catalysts</topic><topic>Conduction loss</topic><topic>electromagnetic radiation</topic><topic>Electromagnetic wave absorption</topic><topic>hot water treatment</topic><topic>magnetism</topic><topic>Metal-organic frameworks</topic><topic>microstructure</topic><topic>N-doped carbon nanotubes</topic><topic>nanoparticles</topic><topic>nanosheets</topic><topic>surface area</topic><topic>vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Wenxuan</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Huang, Fangzhi</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Yu, Xinyao</creatorcontrib><creatorcontrib>Yang, Hengxiu</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Wenxuan</au><au>Peng, Kang</au><au>Li, Shikuo</au><au>Huang, Fangzhi</au><au>Wang, Baojun</au><au>Yu, Xinyao</au><au>Yang, Hengxiu</au><au>Zhang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2023-09-15</date><risdate>2023</risdate><volume>646</volume><spage>265</spage><epage>274</epage><pages>265-274</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>By controlling the Ni/Co ratio in precursor, the microstructure of MOFs with tunable morphology are obtained. The derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. The flower-like microstructure allows more electromagnetic waves to enter the absorber, which is conducive to improving impedance matching, extending the transmission path of electromagnetic waves, and thus losing electromagnetic energy. In addition, the uniformly dispersed CoNi nanoparticles are conducive to improving the magnetic coupling strength, and the resulting heterogeneous interface enhances the interface polarization.
[Display omitted]
In order to acquire exceptional electromagnetic wave absorption properties, the microstructure design and component modification of composites are essential. Metal-organic frameworks (MOFs), due to the unique metal–organic crystalline coordination, tunable morphology, high surface area, and well-defined pores, have been regarded as promising electromagnetic wave absorption materials precursors. However, the inadequate contact abilities between adjacent MOFs nanoparticles endow it with undesirable electromagnetic wave dissipation capacity at a low filler loading, which is a great challenge to break size effect of nanoparticles to achieve efficient absorption. Herein, NiCo-MOFs derived N-doped carbon nanotubes encapsulated with NiCo nanoparticles anchored on flowers-like composites (denoted as NCNT/NiCo/C) were successfully prepared through facile hydrothermal method followed by thermal chemical vapor deposition with melamine-assisted catalyst. By controlling the Ni/Co ratio in precursor, the tunable morphology and microstructure of MOFs are achieved. Most importantly, the derived N-doped carbon nanotubes tightly connect the adjacent nanosheets to construct the special 3D interconnected conductive network, which effectively accelerates the charge transfer and improves the conduction loss. And notably, the NCNT/NiCo/C composite delivers excellent electromagnetic wave absorption performance with minimum reflection loss of −66.1 dB and wide effective absorption bandwidth up to 4.64 GHz when the Ni/Co ratio is 1:1. This work provides a novel method for the preparation of morphology controllable MOFs-derived composites and realizes high-performance electromagnetic wave absorption properties.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37196500</pmid><doi>10.1016/j.jcis.2023.05.049</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2023-09, Vol.646, p.265-274 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153847235 |
source | Elsevier ScienceDirect Journals |
subjects | absorption carbon nanotubes catalysts Conduction loss electromagnetic radiation Electromagnetic wave absorption hot water treatment magnetism Metal-organic frameworks microstructure N-doped carbon nanotubes nanoparticles nanosheets surface area vapors |
title | Designing flower-like MOFs-derived N-doped carbon nanotubes encapsulated magnetic NiCo composites with multi-heterointerfaces for efficient electromagnetic wave absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20flower-like%20MOFs-derived%20N-doped%20carbon%20nanotubes%20encapsulated%20magnetic%20NiCo%20composites%20with%20multi-heterointerfaces%20for%20efficient%20electromagnetic%20wave%20absorption&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Hou,%20Wenxuan&rft.date=2023-09-15&rft.volume=646&rft.spage=265&rft.epage=274&rft.pages=265-274&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.05.049&rft_dat=%3Cproquest_cross%3E2815247140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815247140&rft_id=info:pmid/37196500&rft_els_id=S0021979723008408&rfr_iscdi=true |