Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films

This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-10, Vol.59 (37), p.17322-17337
Hauptverfasser: Srivastava, Stuti, Dwivedi, Charu, Kumar, Ashwani, Gupta, Govind, Singh, Preetam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17337
container_issue 37
container_start_page 17322
container_title Journal of materials science
container_volume 59
creator Srivastava, Stuti
Dwivedi, Charu
Kumar, Ashwani
Gupta, Govind
Singh, Preetam
description This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H 2 S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H 2 S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H 2 S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H 2 S gas sensors and their gas-sensing capabilities. Graphical abstract
doi_str_mv 10.1007/s10853-024-10204-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153844780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112655713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</originalsourceid><addsrcrecordid>eNp9kc9qFEEQxhtRcF19AU8NXrx0Uv1ve3KUkBghJKDJuenpqVknznSPXbOSPEDe295dQfDgqYri-35V1MfYewknEsCdkoTGagHKCAkKjHAv2Epap4VpQL9kKwClhDIb-Zq9IXoAAOuUXLHni8d5zGVIW758R17yiDz3vB_GqQ6G-CMhEQ-p4_nxaYuJ_woxpDgg8ZwOliv1jW8DCcJEe8yMpc9lqqID6esln8I24VJyEjTvlgULdvxmuN3z02ETvWWv-jASvvtT1-z-8uLu_Epc337-cv7pWkSl9SJMCMFibJ3FBmOw9qzV0YBCZwHaqF3cqBY3XY-xM510Lequ0bXT2hjsz_SafTxy55J_7pAWPw0UcRxDwrwjr6XVjTGu_mzNPvwjfci7kup1VSXVxlpXsWumjqpYMlHB3s9lmEJ58hL8Phl_TMbXZPwhGe-qSR9NNO8fj-Uv-j-u399fkoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112655713</pqid></control><display><type>article</type><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><source>Springer Nature - Complete Springer Journals</source><creator>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</creator><creatorcontrib>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</creatorcontrib><description>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H 2 S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H 2 S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H 2 S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H 2 S gas sensors and their gas-sensing capabilities. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10204-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>aluminum oxide ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; detection limit ; Electrical properties ; Film thickness ; films (materials) ; Gas sensors ; Interstitials ; Materials Science ; nickel oxide ; Nickel oxides ; Operating temperature ; Optical properties ; oxygen ; Photoelectrons ; Photoluminescence ; Polymer Sciences ; Recovery time ; Solid Mechanics ; Spectroscopic analysis ; Spectrum analysis ; Stoichiometry ; Substrates ; temperature ; Thickness measurement ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2024-10, Vol.59 (37), p.17322-17337</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</cites><orcidid>0000-0003-4095-7045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10204-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10204-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Srivastava, Stuti</creatorcontrib><creatorcontrib>Dwivedi, Charu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Gupta, Govind</creatorcontrib><creatorcontrib>Singh, Preetam</creatorcontrib><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H 2 S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H 2 S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H 2 S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H 2 S gas sensors and their gas-sensing capabilities. Graphical abstract</description><subject>aluminum oxide</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>detection limit</subject><subject>Electrical properties</subject><subject>Film thickness</subject><subject>films (materials)</subject><subject>Gas sensors</subject><subject>Interstitials</subject><subject>Materials Science</subject><subject>nickel oxide</subject><subject>Nickel oxides</subject><subject>Operating temperature</subject><subject>Optical properties</subject><subject>oxygen</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Polymer Sciences</subject><subject>Recovery time</subject><subject>Solid Mechanics</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Substrates</subject><subject>temperature</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFEEQxhtRcF19AU8NXrx0Uv1ve3KUkBghJKDJuenpqVknznSPXbOSPEDe295dQfDgqYri-35V1MfYewknEsCdkoTGagHKCAkKjHAv2Epap4VpQL9kKwClhDIb-Zq9IXoAAOuUXLHni8d5zGVIW758R17yiDz3vB_GqQ6G-CMhEQ-p4_nxaYuJ_woxpDgg8ZwOliv1jW8DCcJEe8yMpc9lqqID6esln8I24VJyEjTvlgULdvxmuN3z02ETvWWv-jASvvtT1-z-8uLu_Epc337-cv7pWkSl9SJMCMFibJ3FBmOw9qzV0YBCZwHaqF3cqBY3XY-xM510Lequ0bXT2hjsz_SafTxy55J_7pAWPw0UcRxDwrwjr6XVjTGu_mzNPvwjfci7kup1VSXVxlpXsWumjqpYMlHB3s9lmEJ58hL8Phl_TMbXZPwhGe-qSR9NNO8fj-Uv-j-u399fkoI</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Srivastava, Stuti</creator><creator>Dwivedi, Charu</creator><creator>Kumar, Ashwani</creator><creator>Gupta, Govind</creator><creator>Singh, Preetam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4095-7045</orcidid></search><sort><creationdate>20241001</creationdate><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><author>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aluminum oxide</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>detection limit</topic><topic>Electrical properties</topic><topic>Film thickness</topic><topic>films (materials)</topic><topic>Gas sensors</topic><topic>Interstitials</topic><topic>Materials Science</topic><topic>nickel oxide</topic><topic>Nickel oxides</topic><topic>Operating temperature</topic><topic>Optical properties</topic><topic>oxygen</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Polymer Sciences</topic><topic>Recovery time</topic><topic>Solid Mechanics</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Substrates</topic><topic>temperature</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Stuti</creatorcontrib><creatorcontrib>Dwivedi, Charu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Gupta, Govind</creatorcontrib><creatorcontrib>Singh, Preetam</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Stuti</au><au>Dwivedi, Charu</au><au>Kumar, Ashwani</au><au>Gupta, Govind</au><au>Singh, Preetam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>59</volume><issue>37</issue><spage>17322</spage><epage>17337</epage><pages>17322-17337</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H 2 S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H 2 S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H 2 S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H 2 S gas sensors and their gas-sensing capabilities. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10204-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4095-7045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-10, Vol.59 (37), p.17322-17337
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3153844780
source Springer Nature - Complete Springer Journals
subjects aluminum oxide
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
detection limit
Electrical properties
Film thickness
films (materials)
Gas sensors
Interstitials
Materials Science
nickel oxide
Nickel oxides
Operating temperature
Optical properties
oxygen
Photoelectrons
Photoluminescence
Polymer Sciences
Recovery time
Solid Mechanics
Spectroscopic analysis
Spectrum analysis
Stoichiometry
Substrates
temperature
Thickness measurement
Thin films
X ray photoelectron spectroscopy
X-ray diffraction
title Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20role%20of%20film%20thickness%20and%20oxygen%20vacancies%20on%20the%20H2S%20gas-sensing%20performance%20of%20RF%20magnetron-sputtered%20NiO%20thin%20films&rft.jtitle=Journal%20of%20materials%20science&rft.au=Srivastava,%20Stuti&rft.date=2024-10-01&rft.volume=59&rft.issue=37&rft.spage=17322&rft.epage=17337&rft.pages=17322-17337&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10204-7&rft_dat=%3Cproquest_cross%3E3112655713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112655713&rft_id=info:pmid/&rfr_iscdi=true