Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films
This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H 2 S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm....
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-10, Vol.59 (37), p.17322-17337 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17337 |
---|---|
container_issue | 37 |
container_start_page | 17322 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Srivastava, Stuti Dwivedi, Charu Kumar, Ashwani Gupta, Govind Singh, Preetam |
description | This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H
2
S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H
2
S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H
2
S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H
2
S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H
2
S gas sensors and their gas-sensing capabilities.
Graphical abstract |
doi_str_mv | 10.1007/s10853-024-10204-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153844780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112655713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</originalsourceid><addsrcrecordid>eNp9kc9qFEEQxhtRcF19AU8NXrx0Uv1ve3KUkBghJKDJuenpqVknznSPXbOSPEDe295dQfDgqYri-35V1MfYewknEsCdkoTGagHKCAkKjHAv2Epap4VpQL9kKwClhDIb-Zq9IXoAAOuUXLHni8d5zGVIW758R17yiDz3vB_GqQ6G-CMhEQ-p4_nxaYuJ_woxpDgg8ZwOliv1jW8DCcJEe8yMpc9lqqID6esln8I24VJyEjTvlgULdvxmuN3z02ETvWWv-jASvvtT1-z-8uLu_Epc337-cv7pWkSl9SJMCMFibJ3FBmOw9qzV0YBCZwHaqF3cqBY3XY-xM510Lequ0bXT2hjsz_SafTxy55J_7pAWPw0UcRxDwrwjr6XVjTGu_mzNPvwjfci7kup1VSXVxlpXsWumjqpYMlHB3s9lmEJ58hL8Phl_TMbXZPwhGe-qSR9NNO8fj-Uv-j-u399fkoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112655713</pqid></control><display><type>article</type><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><source>Springer Nature - Complete Springer Journals</source><creator>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</creator><creatorcontrib>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</creatorcontrib><description>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H
2
S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H
2
S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H
2
S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H
2
S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H
2
S gas sensors and their gas-sensing capabilities.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10204-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>aluminum oxide ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; detection limit ; Electrical properties ; Film thickness ; films (materials) ; Gas sensors ; Interstitials ; Materials Science ; nickel oxide ; Nickel oxides ; Operating temperature ; Optical properties ; oxygen ; Photoelectrons ; Photoluminescence ; Polymer Sciences ; Recovery time ; Solid Mechanics ; Spectroscopic analysis ; Spectrum analysis ; Stoichiometry ; Substrates ; temperature ; Thickness measurement ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2024-10, Vol.59 (37), p.17322-17337</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</cites><orcidid>0000-0003-4095-7045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10204-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10204-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Srivastava, Stuti</creatorcontrib><creatorcontrib>Dwivedi, Charu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Gupta, Govind</creatorcontrib><creatorcontrib>Singh, Preetam</creatorcontrib><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H
2
S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H
2
S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H
2
S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H
2
S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H
2
S gas sensors and their gas-sensing capabilities.
Graphical abstract</description><subject>aluminum oxide</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>detection limit</subject><subject>Electrical properties</subject><subject>Film thickness</subject><subject>films (materials)</subject><subject>Gas sensors</subject><subject>Interstitials</subject><subject>Materials Science</subject><subject>nickel oxide</subject><subject>Nickel oxides</subject><subject>Operating temperature</subject><subject>Optical properties</subject><subject>oxygen</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Polymer Sciences</subject><subject>Recovery time</subject><subject>Solid Mechanics</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Substrates</subject><subject>temperature</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFEEQxhtRcF19AU8NXrx0Uv1ve3KUkBghJKDJuenpqVknznSPXbOSPEDe295dQfDgqYri-35V1MfYewknEsCdkoTGagHKCAkKjHAv2Epap4VpQL9kKwClhDIb-Zq9IXoAAOuUXLHni8d5zGVIW758R17yiDz3vB_GqQ6G-CMhEQ-p4_nxaYuJ_woxpDgg8ZwOliv1jW8DCcJEe8yMpc9lqqID6esln8I24VJyEjTvlgULdvxmuN3z02ETvWWv-jASvvtT1-z-8uLu_Epc337-cv7pWkSl9SJMCMFibJ3FBmOw9qzV0YBCZwHaqF3cqBY3XY-xM510Lequ0bXT2hjsz_SafTxy55J_7pAWPw0UcRxDwrwjr6XVjTGu_mzNPvwjfci7kup1VSXVxlpXsWumjqpYMlHB3s9lmEJ58hL8Phl_TMbXZPwhGe-qSR9NNO8fj-Uv-j-u399fkoI</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Srivastava, Stuti</creator><creator>Dwivedi, Charu</creator><creator>Kumar, Ashwani</creator><creator>Gupta, Govind</creator><creator>Singh, Preetam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4095-7045</orcidid></search><sort><creationdate>20241001</creationdate><title>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</title><author>Srivastava, Stuti ; Dwivedi, Charu ; Kumar, Ashwani ; Gupta, Govind ; Singh, Preetam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-4aaa5ecb75e8eca559b3c402e7500bc37c62be6dfecd4d17be3d834d13344ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aluminum oxide</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>detection limit</topic><topic>Electrical properties</topic><topic>Film thickness</topic><topic>films (materials)</topic><topic>Gas sensors</topic><topic>Interstitials</topic><topic>Materials Science</topic><topic>nickel oxide</topic><topic>Nickel oxides</topic><topic>Operating temperature</topic><topic>Optical properties</topic><topic>oxygen</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Polymer Sciences</topic><topic>Recovery time</topic><topic>Solid Mechanics</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Substrates</topic><topic>temperature</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Stuti</creatorcontrib><creatorcontrib>Dwivedi, Charu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Gupta, Govind</creatorcontrib><creatorcontrib>Singh, Preetam</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Stuti</au><au>Dwivedi, Charu</au><au>Kumar, Ashwani</au><au>Gupta, Govind</au><au>Singh, Preetam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>59</volume><issue>37</issue><spage>17322</spage><epage>17337</epage><pages>17322-17337</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This work explores the thickness effect of RF magnetron-sputtered nickel oxide (NiO) thin films for evaluating their H
2
S gas-sensing characteristics. NiO thin films were prepared on alumina substrates by varying the deposition time, and the resulting film thicknesses were 25 nm, 52 nm, and 76 nm. X-ray diffraction results demonstrate the polycrystalline nature and cubic structure of NiO thin films. Photoluminescence spectroscopy measurements revealed increased defect content (Ni interstitials and O vacancies) in the 52-nm-thick NiO thin film. Furthermore, X-ray photoelectron spectroscopy results confirmed the thickness effect on NiO thin film stoichiometry. Conductivity measurements at working temperatures ranging from 200 to 450 °C were also used to investigate the gas-sensing tests. The NiO thin film with a thickness of 52 nm proved to be an excellent H
2
S gas sensor, with a remarkable sensor response of 260% and a response/recovery time of ~ 52 s/23 s for 50 ppm H
2
S at a relatively low operating temperature of 275 °C. Additionally, the film displays a low H
2
S detection limit of ~ 0.2 ppm. This study investigates the relationship between the thickness, structural, optical, and electrical properties of NiO thin film-based H
2
S gas sensors and their gas-sensing capabilities.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10204-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4095-7045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-10, Vol.59 (37), p.17322-17337 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153844780 |
source | Springer Nature - Complete Springer Journals |
subjects | aluminum oxide Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods detection limit Electrical properties Film thickness films (materials) Gas sensors Interstitials Materials Science nickel oxide Nickel oxides Operating temperature Optical properties oxygen Photoelectrons Photoluminescence Polymer Sciences Recovery time Solid Mechanics Spectroscopic analysis Spectrum analysis Stoichiometry Substrates temperature Thickness measurement Thin films X ray photoelectron spectroscopy X-ray diffraction |
title | Exploring the role of film thickness and oxygen vacancies on the H2S gas-sensing performance of RF magnetron-sputtered NiO thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20role%20of%20film%20thickness%20and%20oxygen%20vacancies%20on%20the%20H2S%20gas-sensing%20performance%20of%20RF%20magnetron-sputtered%20NiO%20thin%20films&rft.jtitle=Journal%20of%20materials%20science&rft.au=Srivastava,%20Stuti&rft.date=2024-10-01&rft.volume=59&rft.issue=37&rft.spage=17322&rft.epage=17337&rft.pages=17322-17337&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10204-7&rft_dat=%3Cproquest_cross%3E3112655713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112655713&rft_id=info:pmid/&rfr_iscdi=true |