Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net

Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-10, Vol.146 (41), p.28491-28499
Hauptverfasser: Yang, Guokun, Xiao, Hengyu, Gao, Hao, Zhang, Baicheng, Hu, Wei, Chen, Cheng, Qiao, Qinyu, Zhang, Guozhen, Feng, Shuo, Liu, Daobin, Wang, Yang, Jiang, Jun, Luo, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28499
container_issue 41
container_start_page 28491
container_title Journal of the American Chemical Society
container_volume 146
creator Yang, Guokun
Xiao, Hengyu
Gao, Hao
Zhang, Baicheng
Hu, Wei
Chen, Cheng
Qiao, Qinyu
Zhang, Guozhen
Feng, Shuo
Liu, Daobin
Wang, Yang
Jiang, Jun
Luo, Yi
description Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and analyze. To tackle this issue, we developed a deep learning denoising protocol based on an attention-enhanced U-net architecture. This model leverages the inherent correlations between high- and low-frequency vibrational modes within a molecule, effectively reconstructing low-frequency spectral features from their high-frequency counterparts. We demonstrate the effectiveness of this method by recovering low-frequency signals of trans-1,2-bis­(4-pyridyl)­ethylene (BPE) adsorbed on an Ag surface, a representative system for surface enhancement Raman spectroscopy (SERS). Notably, the trained model exhibits promising transferability to SERS spectra acquired under different surface and external field conditions. Furthermore, we applied this method to experimental IR and Raman spectra of BPE, achieving high-quality, low-frequency spectral recovery.
doi_str_mv 10.1021/jacs.4c10893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153842736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113381459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-b7a78a6ce8df56569ce8e2ecfce07146f5b5fe8e3480672309af5bd7184b909e3</originalsourceid><addsrcrecordid>eNqNkL9OwzAQhy0EoqWwMaOMDKT4XxxnrCoKSFWRgCK2yHEv4Kpxgu2q6sYr8Io8CalaYGFg8vnu8--sD6FTgvsEU3I5V9r3uSZYZmwPdUlCcZwQKvZRF2NM41QK1kFH3s_bK6eSHKIOy5hIJcu66PkeGmWcsS_RpDYe4mFtg6qMVQFm0bhexSMHb0uweh09mcKpYGqrFtFDAzo4Fa1MeI2UjQYhgN3Mounn-8cEwjE6KNXCw8nu7KHp6OpxeBOP765vh4NxrCjnIS5SlUolNMhZmYhEZG0FFHSpAaeEizIpkrJtMS6xSCnDmWpbs5RIXmQ4A9ZD59vcxtXtP33IK-M1LBbKQr30OSMJk5ymTPwDJYxJwpOsRS-2qHa19w7KvHGmUm6dE5xvtOcb7flOe4uf7ZKXRQWzH_jb8-_qzat5vXStQ_931hfuiYxG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113381459</pqid></control><display><type>article</type><title>Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net</title><source>ACS Publications</source><creator>Yang, Guokun ; Xiao, Hengyu ; Gao, Hao ; Zhang, Baicheng ; Hu, Wei ; Chen, Cheng ; Qiao, Qinyu ; Zhang, Guozhen ; Feng, Shuo ; Liu, Daobin ; Wang, Yang ; Jiang, Jun ; Luo, Yi</creator><creatorcontrib>Yang, Guokun ; Xiao, Hengyu ; Gao, Hao ; Zhang, Baicheng ; Hu, Wei ; Chen, Cheng ; Qiao, Qinyu ; Zhang, Guozhen ; Feng, Shuo ; Liu, Daobin ; Wang, Yang ; Jiang, Jun ; Luo, Yi</creatorcontrib><description>Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and analyze. To tackle this issue, we developed a deep learning denoising protocol based on an attention-enhanced U-net architecture. This model leverages the inherent correlations between high- and low-frequency vibrational modes within a molecule, effectively reconstructing low-frequency spectral features from their high-frequency counterparts. We demonstrate the effectiveness of this method by recovering low-frequency signals of trans-1,2-bis­(4-pyridyl)­ethylene (BPE) adsorbed on an Ag surface, a representative system for surface enhancement Raman spectroscopy (SERS). Notably, the trained model exhibits promising transferability to SERS spectra acquired under different surface and external field conditions. Furthermore, we applied this method to experimental IR and Raman spectra of BPE, achieving high-quality, low-frequency spectral recovery.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c10893</identifier><identifier>PMID: 39367839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Americans ; chemical interactions ; fields ; Raman spectroscopy ; surfaces</subject><ispartof>Journal of the American Chemical Society, 2024-10, Vol.146 (41), p.28491-28499</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a244t-b7a78a6ce8df56569ce8e2ecfce07146f5b5fe8e3480672309af5bd7184b909e3</cites><orcidid>0000-0002-6116-5605 ; 0000-0002-8811-7646 ; 0000-0003-0125-9666 ; 0000-0002-1899-028X ; 0000-0002-6079-7053 ; 0009-0003-1561-817X ; 0000-0002-7467-4783 ; 0000-0003-0530-8381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c10893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c10893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39367839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Guokun</creatorcontrib><creatorcontrib>Xiao, Hengyu</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Zhang, Baicheng</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Qiao, Qinyu</creatorcontrib><creatorcontrib>Zhang, Guozhen</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Liu, Daobin</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><title>Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and analyze. To tackle this issue, we developed a deep learning denoising protocol based on an attention-enhanced U-net architecture. This model leverages the inherent correlations between high- and low-frequency vibrational modes within a molecule, effectively reconstructing low-frequency spectral features from their high-frequency counterparts. We demonstrate the effectiveness of this method by recovering low-frequency signals of trans-1,2-bis­(4-pyridyl)­ethylene (BPE) adsorbed on an Ag surface, a representative system for surface enhancement Raman spectroscopy (SERS). Notably, the trained model exhibits promising transferability to SERS spectra acquired under different surface and external field conditions. Furthermore, we applied this method to experimental IR and Raman spectra of BPE, achieving high-quality, low-frequency spectral recovery.</description><subject>Americans</subject><subject>chemical interactions</subject><subject>fields</subject><subject>Raman spectroscopy</subject><subject>surfaces</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkL9OwzAQhy0EoqWwMaOMDKT4XxxnrCoKSFWRgCK2yHEv4Kpxgu2q6sYr8Io8CalaYGFg8vnu8--sD6FTgvsEU3I5V9r3uSZYZmwPdUlCcZwQKvZRF2NM41QK1kFH3s_bK6eSHKIOy5hIJcu66PkeGmWcsS_RpDYe4mFtg6qMVQFm0bhexSMHb0uweh09mcKpYGqrFtFDAzo4Fa1MeI2UjQYhgN3Mounn-8cEwjE6KNXCw8nu7KHp6OpxeBOP765vh4NxrCjnIS5SlUolNMhZmYhEZG0FFHSpAaeEizIpkrJtMS6xSCnDmWpbs5RIXmQ4A9ZD59vcxtXtP33IK-M1LBbKQr30OSMJk5ymTPwDJYxJwpOsRS-2qHa19w7KvHGmUm6dE5xvtOcb7flOe4uf7ZKXRQWzH_jb8-_qzat5vXStQ_931hfuiYxG</recordid><startdate>20241005</startdate><enddate>20241005</enddate><creator>Yang, Guokun</creator><creator>Xiao, Hengyu</creator><creator>Gao, Hao</creator><creator>Zhang, Baicheng</creator><creator>Hu, Wei</creator><creator>Chen, Cheng</creator><creator>Qiao, Qinyu</creator><creator>Zhang, Guozhen</creator><creator>Feng, Shuo</creator><creator>Liu, Daobin</creator><creator>Wang, Yang</creator><creator>Jiang, Jun</creator><creator>Luo, Yi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6116-5605</orcidid><orcidid>https://orcid.org/0000-0002-8811-7646</orcidid><orcidid>https://orcid.org/0000-0003-0125-9666</orcidid><orcidid>https://orcid.org/0000-0002-1899-028X</orcidid><orcidid>https://orcid.org/0000-0002-6079-7053</orcidid><orcidid>https://orcid.org/0009-0003-1561-817X</orcidid><orcidid>https://orcid.org/0000-0002-7467-4783</orcidid><orcidid>https://orcid.org/0000-0003-0530-8381</orcidid></search><sort><creationdate>20241005</creationdate><title>Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net</title><author>Yang, Guokun ; Xiao, Hengyu ; Gao, Hao ; Zhang, Baicheng ; Hu, Wei ; Chen, Cheng ; Qiao, Qinyu ; Zhang, Guozhen ; Feng, Shuo ; Liu, Daobin ; Wang, Yang ; Jiang, Jun ; Luo, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-b7a78a6ce8df56569ce8e2ecfce07146f5b5fe8e3480672309af5bd7184b909e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Americans</topic><topic>chemical interactions</topic><topic>fields</topic><topic>Raman spectroscopy</topic><topic>surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guokun</creatorcontrib><creatorcontrib>Xiao, Hengyu</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Zhang, Baicheng</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Qiao, Qinyu</creatorcontrib><creatorcontrib>Zhang, Guozhen</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Liu, Daobin</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guokun</au><au>Xiao, Hengyu</au><au>Gao, Hao</au><au>Zhang, Baicheng</au><au>Hu, Wei</au><au>Chen, Cheng</au><au>Qiao, Qinyu</au><au>Zhang, Guozhen</au><au>Feng, Shuo</au><au>Liu, Daobin</au><au>Wang, Yang</au><au>Jiang, Jun</au><au>Luo, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-10-05</date><risdate>2024</risdate><volume>146</volume><issue>41</issue><spage>28491</spage><epage>28499</epage><pages>28491-28499</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and analyze. To tackle this issue, we developed a deep learning denoising protocol based on an attention-enhanced U-net architecture. This model leverages the inherent correlations between high- and low-frequency vibrational modes within a molecule, effectively reconstructing low-frequency spectral features from their high-frequency counterparts. We demonstrate the effectiveness of this method by recovering low-frequency signals of trans-1,2-bis­(4-pyridyl)­ethylene (BPE) adsorbed on an Ag surface, a representative system for surface enhancement Raman spectroscopy (SERS). Notably, the trained model exhibits promising transferability to SERS spectra acquired under different surface and external field conditions. Furthermore, we applied this method to experimental IR and Raman spectra of BPE, achieving high-quality, low-frequency spectral recovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39367839</pmid><doi>10.1021/jacs.4c10893</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6116-5605</orcidid><orcidid>https://orcid.org/0000-0002-8811-7646</orcidid><orcidid>https://orcid.org/0000-0003-0125-9666</orcidid><orcidid>https://orcid.org/0000-0002-1899-028X</orcidid><orcidid>https://orcid.org/0000-0002-6079-7053</orcidid><orcidid>https://orcid.org/0009-0003-1561-817X</orcidid><orcidid>https://orcid.org/0000-0002-7467-4783</orcidid><orcidid>https://orcid.org/0000-0003-0530-8381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-10, Vol.146 (41), p.28491-28499
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3153842736
source ACS Publications
subjects Americans
chemical interactions
fields
Raman spectroscopy
surfaces
title Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U‑Net
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repairing%20Noise-Contaminated%20Low-Frequency%20Vibrational%20Spectra%20with%20an%20Attention%20U%E2%80%91Net&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yang,%20Guokun&rft.date=2024-10-05&rft.volume=146&rft.issue=41&rft.spage=28491&rft.epage=28499&rft.pages=28491-28499&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c10893&rft_dat=%3Cproquest_cross%3E3113381459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113381459&rft_id=info:pmid/39367839&rfr_iscdi=true