Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell

•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2023-01, Vol.276, p.116483, Article 116483
Hauptverfasser: Han, Yu, Guo, Meiting, Sun, Anwei, Liu, Hongwei, Xiao, Gang, Sun, Yi, Ni, Meng, Xu, Haoran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116483
container_title Energy conversion and management
container_volume 276
creator Han, Yu
Guo, Meiting
Sun, Anwei
Liu, Hongwei
Xiao, Gang
Sun, Yi
Ni, Meng
Xu, Haoran
description •A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.
doi_str_mv 10.1016/j.enconman.2022.116483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153834559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422012614</els_id><sourcerecordid>3153834559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</originalsourceid><addsrcrecordid>eNqFkE9v2zAMxYVhBZp1_QqFjr040x9btm4dgq0rEGCX7izQEt0qkK1MUrbk21dB1vNOBMjHR74fIXecrTnj6stujYuNywzLWjAh1pyrdpAfyIoPvW6EEP1HsmJcq2bQrL0mn3LeMcZkx9SKHJ_jX0gu0wkh-zEgLTjvMUE5JKTVE15wxqVQWBwtr5jm2MxoX2HxFgLNBUYffDnROFELaYxLAzn7XNDRHIN3NB69Q4oBbUkxnOqMWgzhM7maIGS8_VdvyK_v3543P5rtz8enzddtY2XblaZVyrYw9O3ERQ_C6gHV4KCDlnWd1ML1CrS00olxGlurO6Vrc9AWHJ_0ZOUNub_47lP8fcBczOzz-QFYMB6ykbyTQz3V6SpVF6lNMeeEk9knP0M6Gc7MGbXZmXfU5ozaXFDXxYfLItYgfzwmk62vSnQ-1djGRf8_izfS5Y49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153834559</pqid></control><display><type>article</type><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><source>Elsevier ScienceDirect Journals</source><creator>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</creator><creatorcontrib>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</creatorcontrib><description>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.116483</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>administrative management ; anodes ; carbon ; Carbon assistance ; electrochemistry ; electrolysis ; endothermy ; energy conversion ; foams ; Fuel production ; gasification ; heat transfer ; Solid oxide electrolysis cell ; temperature ; Temperature distribution ; Thermo-mechanical stress</subject><ispartof>Energy conversion and management, 2023-01, Vol.276, p.116483, Article 116483</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</citedby><cites>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890422012614$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Guo, Meiting</creatorcontrib><creatorcontrib>Sun, Anwei</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><title>Energy conversion and management</title><description>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</description><subject>administrative management</subject><subject>anodes</subject><subject>carbon</subject><subject>Carbon assistance</subject><subject>electrochemistry</subject><subject>electrolysis</subject><subject>endothermy</subject><subject>energy conversion</subject><subject>foams</subject><subject>Fuel production</subject><subject>gasification</subject><subject>heat transfer</subject><subject>Solid oxide electrolysis cell</subject><subject>temperature</subject><subject>Temperature distribution</subject><subject>Thermo-mechanical stress</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v2zAMxYVhBZp1_QqFjr040x9btm4dgq0rEGCX7izQEt0qkK1MUrbk21dB1vNOBMjHR74fIXecrTnj6stujYuNywzLWjAh1pyrdpAfyIoPvW6EEP1HsmJcq2bQrL0mn3LeMcZkx9SKHJ_jX0gu0wkh-zEgLTjvMUE5JKTVE15wxqVQWBwtr5jm2MxoX2HxFgLNBUYffDnROFELaYxLAzn7XNDRHIN3NB69Q4oBbUkxnOqMWgzhM7maIGS8_VdvyK_v3543P5rtz8enzddtY2XblaZVyrYw9O3ERQ_C6gHV4KCDlnWd1ML1CrS00olxGlurO6Vrc9AWHJ_0ZOUNub_47lP8fcBczOzz-QFYMB6ykbyTQz3V6SpVF6lNMeeEk9knP0M6Gc7MGbXZmXfU5ozaXFDXxYfLItYgfzwmk62vSnQ-1djGRf8_izfS5Y49</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Han, Yu</creator><creator>Guo, Meiting</creator><creator>Sun, Anwei</creator><creator>Liu, Hongwei</creator><creator>Xiao, Gang</creator><creator>Sun, Yi</creator><creator>Ni, Meng</creator><creator>Xu, Haoran</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230115</creationdate><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><author>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>administrative management</topic><topic>anodes</topic><topic>carbon</topic><topic>Carbon assistance</topic><topic>electrochemistry</topic><topic>electrolysis</topic><topic>endothermy</topic><topic>energy conversion</topic><topic>foams</topic><topic>Fuel production</topic><topic>gasification</topic><topic>heat transfer</topic><topic>Solid oxide electrolysis cell</topic><topic>temperature</topic><topic>Temperature distribution</topic><topic>Thermo-mechanical stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Guo, Meiting</creatorcontrib><creatorcontrib>Sun, Anwei</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yu</au><au>Guo, Meiting</au><au>Sun, Anwei</au><au>Liu, Hongwei</au><au>Xiao, Gang</au><au>Sun, Yi</au><au>Ni, Meng</au><au>Xu, Haoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</atitle><jtitle>Energy conversion and management</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>276</volume><spage>116483</spage><pages>116483-</pages><artnum>116483</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.116483</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2023-01, Vol.276, p.116483, Article 116483
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_3153834559
source Elsevier ScienceDirect Journals
subjects administrative management
anodes
carbon
Carbon assistance
electrochemistry
electrolysis
endothermy
energy conversion
foams
Fuel production
gasification
heat transfer
Solid oxide electrolysis cell
temperature
Temperature distribution
Thermo-mechanical stress
title Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20feasible%20temperature%20management%20and%20thermo-mechanical%20stability%20of%20carbon-assisted%20solid%20oxide%20electrolysis%20cell&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Han,%20Yu&rft.date=2023-01-15&rft.volume=276&rft.spage=116483&rft.pages=116483-&rft.artnum=116483&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.116483&rft_dat=%3Cproquest_cross%3E3153834559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153834559&rft_id=info:pmid/&rft_els_id=S0196890422012614&rfr_iscdi=true