Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell
•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved. Carbon assisted solid oxi...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2023-01, Vol.276, p.116483, Article 116483 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116483 |
container_title | Energy conversion and management |
container_volume | 276 |
creator | Han, Yu Guo, Meiting Sun, Anwei Liu, Hongwei Xiao, Gang Sun, Yi Ni, Meng Xu, Haoran |
description | •A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved.
Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels. |
doi_str_mv | 10.1016/j.enconman.2022.116483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153834559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422012614</els_id><sourcerecordid>3153834559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</originalsourceid><addsrcrecordid>eNqFkE9v2zAMxYVhBZp1_QqFjr040x9btm4dgq0rEGCX7izQEt0qkK1MUrbk21dB1vNOBMjHR74fIXecrTnj6stujYuNywzLWjAh1pyrdpAfyIoPvW6EEP1HsmJcq2bQrL0mn3LeMcZkx9SKHJ_jX0gu0wkh-zEgLTjvMUE5JKTVE15wxqVQWBwtr5jm2MxoX2HxFgLNBUYffDnROFELaYxLAzn7XNDRHIN3NB69Q4oBbUkxnOqMWgzhM7maIGS8_VdvyK_v3543P5rtz8enzddtY2XblaZVyrYw9O3ERQ_C6gHV4KCDlnWd1ML1CrS00olxGlurO6Vrc9AWHJ_0ZOUNub_47lP8fcBczOzz-QFYMB6ykbyTQz3V6SpVF6lNMeeEk9knP0M6Gc7MGbXZmXfU5ozaXFDXxYfLItYgfzwmk62vSnQ-1djGRf8_izfS5Y49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153834559</pqid></control><display><type>article</type><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><source>Elsevier ScienceDirect Journals</source><creator>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</creator><creatorcontrib>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</creatorcontrib><description>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved.
Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.116483</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>administrative management ; anodes ; carbon ; Carbon assistance ; electrochemistry ; electrolysis ; endothermy ; energy conversion ; foams ; Fuel production ; gasification ; heat transfer ; Solid oxide electrolysis cell ; temperature ; Temperature distribution ; Thermo-mechanical stress</subject><ispartof>Energy conversion and management, 2023-01, Vol.276, p.116483, Article 116483</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</citedby><cites>FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890422012614$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Guo, Meiting</creatorcontrib><creatorcontrib>Sun, Anwei</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><title>Energy conversion and management</title><description>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved.
Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</description><subject>administrative management</subject><subject>anodes</subject><subject>carbon</subject><subject>Carbon assistance</subject><subject>electrochemistry</subject><subject>electrolysis</subject><subject>endothermy</subject><subject>energy conversion</subject><subject>foams</subject><subject>Fuel production</subject><subject>gasification</subject><subject>heat transfer</subject><subject>Solid oxide electrolysis cell</subject><subject>temperature</subject><subject>Temperature distribution</subject><subject>Thermo-mechanical stress</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v2zAMxYVhBZp1_QqFjr040x9btm4dgq0rEGCX7izQEt0qkK1MUrbk21dB1vNOBMjHR74fIXecrTnj6stujYuNywzLWjAh1pyrdpAfyIoPvW6EEP1HsmJcq2bQrL0mn3LeMcZkx9SKHJ_jX0gu0wkh-zEgLTjvMUE5JKTVE15wxqVQWBwtr5jm2MxoX2HxFgLNBUYffDnROFELaYxLAzn7XNDRHIN3NB69Q4oBbUkxnOqMWgzhM7maIGS8_VdvyK_v3543P5rtz8enzddtY2XblaZVyrYw9O3ERQ_C6gHV4KCDlnWd1ML1CrS00olxGlurO6Vrc9AWHJ_0ZOUNub_47lP8fcBczOzz-QFYMB6ykbyTQz3V6SpVF6lNMeeEk9knP0M6Gc7MGbXZmXfU5ozaXFDXxYfLItYgfzwmk62vSnQ-1djGRf8_izfS5Y49</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Han, Yu</creator><creator>Guo, Meiting</creator><creator>Sun, Anwei</creator><creator>Liu, Hongwei</creator><creator>Xiao, Gang</creator><creator>Sun, Yi</creator><creator>Ni, Meng</creator><creator>Xu, Haoran</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230115</creationdate><title>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</title><author>Han, Yu ; Guo, Meiting ; Sun, Anwei ; Liu, Hongwei ; Xiao, Gang ; Sun, Yi ; Ni, Meng ; Xu, Haoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-466c4a874f127a2c98e68da5a4055392d76a93c3d2bfb4c956992d89cad1f9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>administrative management</topic><topic>anodes</topic><topic>carbon</topic><topic>Carbon assistance</topic><topic>electrochemistry</topic><topic>electrolysis</topic><topic>endothermy</topic><topic>energy conversion</topic><topic>foams</topic><topic>Fuel production</topic><topic>gasification</topic><topic>heat transfer</topic><topic>Solid oxide electrolysis cell</topic><topic>temperature</topic><topic>Temperature distribution</topic><topic>Thermo-mechanical stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Guo, Meiting</creatorcontrib><creatorcontrib>Sun, Anwei</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yu</au><au>Guo, Meiting</au><au>Sun, Anwei</au><au>Liu, Hongwei</au><au>Xiao, Gang</au><au>Sun, Yi</au><au>Ni, Meng</au><au>Xu, Haoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell</atitle><jtitle>Energy conversion and management</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>276</volume><spage>116483</spage><pages>116483-</pages><artnum>116483</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A fully coupled multi-physics model for CA-SOEC is numerically developed.•Feasible thermal management of CA-SOECs is achieved by adopting metal foam chamber.•The maximum thermo-mechanical stress is decreased by 69.9%•Remarkable improvement of thermal stability is achieved.
Carbon assisted solid oxide electrolysis cell (CA-SOEC) owns advantages of fast electrolysis rate, low operating cost and product flexibility. But the endothermic carbon gasification reaction leads to a steep temperature gradient in the anode, thus causing extra thermo-mechanical stress and inhibits long-term operation. Herein, we propose a new CA-SOEC using metal foam in the anode chamber and develop 2D numerical models to evaluate the fluid-dynamic/thermal/chemical/electrochemical/mechanical characteristics of the new cell. It is found that the use of metal foam can significantly enhance the heat transfer process and achieve an even temperature distribution in the CA-SOEC, where the peak temperature difference can be decreased from 57.0 to 21.5 K. As a result, the maximum thermo-mechanical stress is decreased by 69.9 % with the adoption of metal foam. Through further analyses of inlet gas flow rate, inlet gas temperature and the distance between anode chamber and electrode, we find that a small distance and a large flow rate are beneficial for optimizing the temperature distribution. The results of the study provide useful information for the structure optimization of solid oxide cells using carbon fuels.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.116483</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2023-01, Vol.276, p.116483, Article 116483 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153834559 |
source | Elsevier ScienceDirect Journals |
subjects | administrative management anodes carbon Carbon assistance electrochemistry electrolysis endothermy energy conversion foams Fuel production gasification heat transfer Solid oxide electrolysis cell temperature Temperature distribution Thermo-mechanical stress |
title | Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20feasible%20temperature%20management%20and%20thermo-mechanical%20stability%20of%20carbon-assisted%20solid%20oxide%20electrolysis%20cell&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Han,%20Yu&rft.date=2023-01-15&rft.volume=276&rft.spage=116483&rft.pages=116483-&rft.artnum=116483&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.116483&rft_dat=%3Cproquest_cross%3E3153834559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153834559&rft_id=info:pmid/&rft_els_id=S0196890422012614&rfr_iscdi=true |