Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production

Hydrogen (H2) is a clean energy carrier and has recently gained significant attention. Efforts are being made to promote liquid hydrogen (LH2) owing to its long-time storage, transportation, and high-purity end-use requirements. LH2 storage and regasification is an essential step in the H2 supply ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2023-09, Vol.213, p.165-175
Hauptverfasser: Naquash, Ahmad, Riaz, Amjad, Qyyum, Muhammad Abdul, Aziz, Muhammad, Assareh, Ehsanolah, Lee, Moonyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 165
container_title Renewable energy
container_volume 213
creator Naquash, Ahmad
Riaz, Amjad
Qyyum, Muhammad Abdul
Aziz, Muhammad
Assareh, Ehsanolah
Lee, Moonyong
description Hydrogen (H2) is a clean energy carrier and has recently gained significant attention. Efforts are being made to promote liquid hydrogen (LH2) owing to its long-time storage, transportation, and high-purity end-use requirements. LH2 storage and regasification is an essential step in the H2 supply chain. This study proposes a novel integrated energy system that produces liquefied natural gas (LNG), natural gas liquids (NGL), and liquid helium (LHe) utilizing the cold energy of LH2. A well-known process simulation software (Aspen Hysys® v11) is employed to simulate the integrated process. The optimal design variables are found through the Aspen Hysys® built-in Mixed optimization technique. The optimal design shows a specific energy consumption of 0.347 kWh/kg with exergy destruction of 43.3 MW. The required volume of the spherical tank for LH2 storage is 6.3 m3. The results of the lifecycle cost analysis show that the Levelized cost of producing LNG, NGL, and LHe is 0.50 USD/kg, 0.56 USD/kg, and 98.0 USD/kg, respectively. The conclusion of this study suggests that the proposed process can improve the overall H2 supply chain by effectively utilizing LH2 for LNG, NGL, and LHe production. [Display omitted]
doi_str_mv 10.1016/j.renene.2023.05.122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153832792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148123007553</els_id><sourcerecordid>3153832792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-581332605b8e872b3f90eb7268c064bf0ca6e396071d91dd363e2544fc56d71f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARPn4BwweGZrgj9hJFiRUQUGKygKz5diX1FWatHYC6r8nIZ3RDbe8z3u6B6F7SmJKqHzcxR7acWJGGI-JiCljF2hBckkimmT0Cl2HsCOEiixNFsgV7jg4i7cn67saWhz6zusasG4t9lDr4CpndO-6Fh98ZyAE7Noeaq97sPjH9VtcbNZLvFkXyz-oORdC44b9xNjBTPgtuqx0E-DuvG_Q1-vL5-otKj7W76vnIjKc530kMso5k0SUGWQpK3mVEyhTJjNDZFJWxGgJfPwmpTan1nLJgYkkqYyQNqUVv0EPc-94-jhA6NXeBQNNo1vohqA4FTzjLM3ZGE3mqPFdCB4qdfBur_1JUaImm2qnZptqsqmIUKPNEXuaMRjf-HbgVTAOWgPWeTC9sp37v-AXBH-CEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153832792</pqid></control><display><type>article</type><title>Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production</title><source>Elsevier ScienceDirect Journals</source><creator>Naquash, Ahmad ; Riaz, Amjad ; Qyyum, Muhammad Abdul ; Aziz, Muhammad ; Assareh, Ehsanolah ; Lee, Moonyong</creator><creatorcontrib>Naquash, Ahmad ; Riaz, Amjad ; Qyyum, Muhammad Abdul ; Aziz, Muhammad ; Assareh, Ehsanolah ; Lee, Moonyong</creatorcontrib><description>Hydrogen (H2) is a clean energy carrier and has recently gained significant attention. Efforts are being made to promote liquid hydrogen (LH2) owing to its long-time storage, transportation, and high-purity end-use requirements. LH2 storage and regasification is an essential step in the H2 supply chain. This study proposes a novel integrated energy system that produces liquefied natural gas (LNG), natural gas liquids (NGL), and liquid helium (LHe) utilizing the cold energy of LH2. A well-known process simulation software (Aspen Hysys® v11) is employed to simulate the integrated process. The optimal design variables are found through the Aspen Hysys® built-in Mixed optimization technique. The optimal design shows a specific energy consumption of 0.347 kWh/kg with exergy destruction of 43.3 MW. The required volume of the spherical tank for LH2 storage is 6.3 m3. The results of the lifecycle cost analysis show that the Levelized cost of producing LNG, NGL, and LHe is 0.50 USD/kg, 0.56 USD/kg, and 98.0 USD/kg, respectively. The conclusion of this study suggests that the proposed process can improve the overall H2 supply chain by effectively utilizing LH2 for LNG, NGL, and LHe production. [Display omitted]</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2023.05.122</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>clean energy ; cold ; computer simulation ; cost analysis ; exergy ; gasification ; helium ; Helium liquefaction ; hydrogen ; liquefied natural gas ; Liquid hydrogen regasification ; Liquid hydrogen storage ; liquids ; Natural gas liquefaction ; Natural gas liquids ; renewable energy sources ; specific energy ; supply chain ; transportation</subject><ispartof>Renewable energy, 2023-09, Vol.213, p.165-175</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-581332605b8e872b3f90eb7268c064bf0ca6e396071d91dd363e2544fc56d71f3</citedby><cites>FETCH-LOGICAL-c339t-581332605b8e872b3f90eb7268c064bf0ca6e396071d91dd363e2544fc56d71f3</cites><orcidid>0000-0002-4821-5962 ; 0000-0003-2433-8500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148123007553$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Naquash, Ahmad</creatorcontrib><creatorcontrib>Riaz, Amjad</creatorcontrib><creatorcontrib>Qyyum, Muhammad Abdul</creatorcontrib><creatorcontrib>Aziz, Muhammad</creatorcontrib><creatorcontrib>Assareh, Ehsanolah</creatorcontrib><creatorcontrib>Lee, Moonyong</creatorcontrib><title>Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production</title><title>Renewable energy</title><description>Hydrogen (H2) is a clean energy carrier and has recently gained significant attention. Efforts are being made to promote liquid hydrogen (LH2) owing to its long-time storage, transportation, and high-purity end-use requirements. LH2 storage and regasification is an essential step in the H2 supply chain. This study proposes a novel integrated energy system that produces liquefied natural gas (LNG), natural gas liquids (NGL), and liquid helium (LHe) utilizing the cold energy of LH2. A well-known process simulation software (Aspen Hysys® v11) is employed to simulate the integrated process. The optimal design variables are found through the Aspen Hysys® built-in Mixed optimization technique. The optimal design shows a specific energy consumption of 0.347 kWh/kg with exergy destruction of 43.3 MW. The required volume of the spherical tank for LH2 storage is 6.3 m3. The results of the lifecycle cost analysis show that the Levelized cost of producing LNG, NGL, and LHe is 0.50 USD/kg, 0.56 USD/kg, and 98.0 USD/kg, respectively. The conclusion of this study suggests that the proposed process can improve the overall H2 supply chain by effectively utilizing LH2 for LNG, NGL, and LHe production. [Display omitted]</description><subject>clean energy</subject><subject>cold</subject><subject>computer simulation</subject><subject>cost analysis</subject><subject>exergy</subject><subject>gasification</subject><subject>helium</subject><subject>Helium liquefaction</subject><subject>hydrogen</subject><subject>liquefied natural gas</subject><subject>Liquid hydrogen regasification</subject><subject>Liquid hydrogen storage</subject><subject>liquids</subject><subject>Natural gas liquefaction</subject><subject>Natural gas liquids</subject><subject>renewable energy sources</subject><subject>specific energy</subject><subject>supply chain</subject><subject>transportation</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARPn4BwweGZrgj9hJFiRUQUGKygKz5diX1FWatHYC6r8nIZ3RDbe8z3u6B6F7SmJKqHzcxR7acWJGGI-JiCljF2hBckkimmT0Cl2HsCOEiixNFsgV7jg4i7cn67saWhz6zusasG4t9lDr4CpndO-6Fh98ZyAE7Noeaq97sPjH9VtcbNZLvFkXyz-oORdC44b9xNjBTPgtuqx0E-DuvG_Q1-vL5-otKj7W76vnIjKc530kMso5k0SUGWQpK3mVEyhTJjNDZFJWxGgJfPwmpTan1nLJgYkkqYyQNqUVv0EPc-94-jhA6NXeBQNNo1vohqA4FTzjLM3ZGE3mqPFdCB4qdfBur_1JUaImm2qnZptqsqmIUKPNEXuaMRjf-HbgVTAOWgPWeTC9sp37v-AXBH-CEQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Naquash, Ahmad</creator><creator>Riaz, Amjad</creator><creator>Qyyum, Muhammad Abdul</creator><creator>Aziz, Muhammad</creator><creator>Assareh, Ehsanolah</creator><creator>Lee, Moonyong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4821-5962</orcidid><orcidid>https://orcid.org/0000-0003-2433-8500</orcidid></search><sort><creationdate>20230901</creationdate><title>Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production</title><author>Naquash, Ahmad ; Riaz, Amjad ; Qyyum, Muhammad Abdul ; Aziz, Muhammad ; Assareh, Ehsanolah ; Lee, Moonyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-581332605b8e872b3f90eb7268c064bf0ca6e396071d91dd363e2544fc56d71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>clean energy</topic><topic>cold</topic><topic>computer simulation</topic><topic>cost analysis</topic><topic>exergy</topic><topic>gasification</topic><topic>helium</topic><topic>Helium liquefaction</topic><topic>hydrogen</topic><topic>liquefied natural gas</topic><topic>Liquid hydrogen regasification</topic><topic>Liquid hydrogen storage</topic><topic>liquids</topic><topic>Natural gas liquefaction</topic><topic>Natural gas liquids</topic><topic>renewable energy sources</topic><topic>specific energy</topic><topic>supply chain</topic><topic>transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naquash, Ahmad</creatorcontrib><creatorcontrib>Riaz, Amjad</creatorcontrib><creatorcontrib>Qyyum, Muhammad Abdul</creatorcontrib><creatorcontrib>Aziz, Muhammad</creatorcontrib><creatorcontrib>Assareh, Ehsanolah</creatorcontrib><creatorcontrib>Lee, Moonyong</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naquash, Ahmad</au><au>Riaz, Amjad</au><au>Qyyum, Muhammad Abdul</au><au>Aziz, Muhammad</au><au>Assareh, Ehsanolah</au><au>Lee, Moonyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production</atitle><jtitle>Renewable energy</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>213</volume><spage>165</spage><epage>175</epage><pages>165-175</pages><issn>0960-1481</issn><abstract>Hydrogen (H2) is a clean energy carrier and has recently gained significant attention. Efforts are being made to promote liquid hydrogen (LH2) owing to its long-time storage, transportation, and high-purity end-use requirements. LH2 storage and regasification is an essential step in the H2 supply chain. This study proposes a novel integrated energy system that produces liquefied natural gas (LNG), natural gas liquids (NGL), and liquid helium (LHe) utilizing the cold energy of LH2. A well-known process simulation software (Aspen Hysys® v11) is employed to simulate the integrated process. The optimal design variables are found through the Aspen Hysys® built-in Mixed optimization technique. The optimal design shows a specific energy consumption of 0.347 kWh/kg with exergy destruction of 43.3 MW. The required volume of the spherical tank for LH2 storage is 6.3 m3. The results of the lifecycle cost analysis show that the Levelized cost of producing LNG, NGL, and LHe is 0.50 USD/kg, 0.56 USD/kg, and 98.0 USD/kg, respectively. The conclusion of this study suggests that the proposed process can improve the overall H2 supply chain by effectively utilizing LH2 for LNG, NGL, and LHe production. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2023.05.122</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4821-5962</orcidid><orcidid>https://orcid.org/0000-0003-2433-8500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2023-09, Vol.213, p.165-175
issn 0960-1481
language eng
recordid cdi_proquest_miscellaneous_3153832792
source Elsevier ScienceDirect Journals
subjects clean energy
cold
computer simulation
cost analysis
exergy
gasification
helium
Helium liquefaction
hydrogen
liquefied natural gas
Liquid hydrogen regasification
Liquid hydrogen storage
liquids
Natural gas liquefaction
Natural gas liquids
renewable energy sources
specific energy
supply chain
transportation
title Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20hydrogen%20storage%20and%20regasification%20process%20integrated%20with%20LNG,%20NGL,%20and%20liquid%20helium%20production&rft.jtitle=Renewable%20energy&rft.au=Naquash,%20Ahmad&rft.date=2023-09-01&rft.volume=213&rft.spage=165&rft.epage=175&rft.pages=165-175&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2023.05.122&rft_dat=%3Cproquest_cross%3E3153832792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153832792&rft_id=info:pmid/&rft_els_id=S0960148123007553&rfr_iscdi=true