Engineering Anisotropy into Organized Nanoscale Matter
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resultin...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2024-10, Vol.124 (19), p.11063-11107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11107 |
---|---|
container_issue | 19 |
container_start_page | 11063 |
container_title | Chemical reviews |
container_volume | 124 |
creator | Zhou, Wenjie Li, Yuanwei Partridge, Benjamin E. Mirkin, Chad A. |
description | Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D–3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control. |
doi_str_mv | 10.1021/acs.chemrev.4c00299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153829192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153829192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-51178f0e5194cf8d0176151a293446e5c40a913235f98ed20cb5e2490cd32ae53</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRbK3-AkECbtyknUdmklmWUh9Q7UbXYTq5qSnJTJ1JhPrrndLYhQtxdbnwnXMfB6FrgscEUzJR2o_1OzQOPseJxphKeYKGhFMci0ziUzTEGMuYCsEH6ML7TWg5p-k5GjDJCBeUDJGYm3VlAFxl1tHUVN62zm53UWVaGy3dWpnqC4roRRnrtaohelZtC-4SnZWq9nDV1xF6u5-_zh7jxfLhaTZdxIpmoo05IWlWYuBEJrrMCkxSQThRVLIkEcB1gpUkjDJeygwKivWKA00k1gWjCjgbobuD79bZjw58mzeV11DXyoDtfB7OYBmVRNJ_oDhLRcJoFtDbX-jGds6EQwIV9ktSxvcUO1DaWe8dlPnWVY1yu5zgfJ9AHhLI-wTyPoGguum9u1UDxVHz8_IATA7AXn2c-5flN6v8kbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115147358</pqid></control><display><type>article</type><title>Engineering Anisotropy into Organized Nanoscale Matter</title><source>ACS Publications</source><creator>Zhou, Wenjie ; Li, Yuanwei ; Partridge, Benjamin E. ; Mirkin, Chad A.</creator><creatorcontrib>Zhou, Wenjie ; Li, Yuanwei ; Partridge, Benjamin E. ; Mirkin, Chad A.</creatorcontrib><description>Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D–3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.4c00299</identifier><identifier>PMID: 39315621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anisotropy ; Catalysis ; catalytic activity ; Crystals ; geometry ; Inverse design ; isotropy ; Optics ; Spatial distribution</subject><ispartof>Chemical reviews, 2024-10, Vol.124 (19), p.11063-11107</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a286t-51178f0e5194cf8d0176151a293446e5c40a913235f98ed20cb5e2490cd32ae53</cites><orcidid>0000-0002-6634-7627 ; 0000-0003-2359-1280 ; 0000-0002-0338-5335 ; 0000-0002-7626-4032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.4c00299$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.4c00299$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39315621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Partridge, Benjamin E.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><title>Engineering Anisotropy into Organized Nanoscale Matter</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D–3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.</description><subject>Anisotropy</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Crystals</subject><subject>geometry</subject><subject>Inverse design</subject><subject>isotropy</subject><subject>Optics</subject><subject>Spatial distribution</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLw0AUhQdRbK3-AkECbtyknUdmklmWUh9Q7UbXYTq5qSnJTJ1JhPrrndLYhQtxdbnwnXMfB6FrgscEUzJR2o_1OzQOPseJxphKeYKGhFMci0ziUzTEGMuYCsEH6ML7TWg5p-k5GjDJCBeUDJGYm3VlAFxl1tHUVN62zm53UWVaGy3dWpnqC4roRRnrtaohelZtC-4SnZWq9nDV1xF6u5-_zh7jxfLhaTZdxIpmoo05IWlWYuBEJrrMCkxSQThRVLIkEcB1gpUkjDJeygwKivWKA00k1gWjCjgbobuD79bZjw58mzeV11DXyoDtfB7OYBmVRNJ_oDhLRcJoFtDbX-jGds6EQwIV9ktSxvcUO1DaWe8dlPnWVY1yu5zgfJ9AHhLI-wTyPoGguum9u1UDxVHz8_IATA7AXn2c-5flN6v8kbU</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Zhou, Wenjie</creator><creator>Li, Yuanwei</creator><creator>Partridge, Benjamin E.</creator><creator>Mirkin, Chad A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0003-2359-1280</orcidid><orcidid>https://orcid.org/0000-0002-0338-5335</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid></search><sort><creationdate>20241009</creationdate><title>Engineering Anisotropy into Organized Nanoscale Matter</title><author>Zhou, Wenjie ; Li, Yuanwei ; Partridge, Benjamin E. ; Mirkin, Chad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-51178f0e5194cf8d0176151a293446e5c40a913235f98ed20cb5e2490cd32ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Crystals</topic><topic>geometry</topic><topic>Inverse design</topic><topic>isotropy</topic><topic>Optics</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>Li, Yuanwei</creatorcontrib><creatorcontrib>Partridge, Benjamin E.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wenjie</au><au>Li, Yuanwei</au><au>Partridge, Benjamin E.</au><au>Mirkin, Chad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Anisotropy into Organized Nanoscale Matter</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>124</volume><issue>19</issue><spage>11063</spage><epage>11107</epage><pages>11063-11107</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D–3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39315621</pmid><doi>10.1021/acs.chemrev.4c00299</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0003-2359-1280</orcidid><orcidid>https://orcid.org/0000-0002-0338-5335</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2024-10, Vol.124 (19), p.11063-11107 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153829192 |
source | ACS Publications |
subjects | Anisotropy Catalysis catalytic activity Crystals geometry Inverse design isotropy Optics Spatial distribution |
title | Engineering Anisotropy into Organized Nanoscale Matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Anisotropy%20into%20Organized%20Nanoscale%20Matter&rft.jtitle=Chemical%20reviews&rft.au=Zhou,%20Wenjie&rft.date=2024-10-09&rft.volume=124&rft.issue=19&rft.spage=11063&rft.epage=11107&rft.pages=11063-11107&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.4c00299&rft_dat=%3Cproquest_cross%3E3153829192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115147358&rft_id=info:pmid/39315621&rfr_iscdi=true |