In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats

Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2024-10, Vol.26 (5), p.1053-1066
Hauptverfasser: de A. Cruz, Matheus, Sousa, Karolyne S. J., Avanzi, Ingrid R., de Souza, Amanda, Martignago, Cintia C. S., Delpupo, Fernanda V. B., Simões, Mariana C., Parisi, Julia R., Assis, Livia, De Oliveira, Flávia, Granito, Renata N., Laakso, Eeva-Liisa, Renno, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 5
container_start_page 1053
container_title Marine biotechnology (New York, N.Y.)
container_volume 26
creator de A. Cruz, Matheus
Sousa, Karolyne S. J.
Avanzi, Ingrid R.
de Souza, Amanda
Martignago, Cintia C. S.
Delpupo, Fernanda V. B.
Simões, Mariana C.
Parisi, Julia R.
Assis, Livia
De Oliveira, Flávia
Granito, Renata N.
Laakso, Eeva-Liisa
Renno, Ana
description Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.
doi_str_mv 10.1007/s10126-024-10356-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153828356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094045415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</originalsourceid><addsrcrecordid>eNqFkUtPGzEUhS1E1UDoH2BRWWLDZuj1YzwzyxJBQYpEVWi3luO5kzqd2MGeIPHvaxhIpS5g5Sv5O-c-DiHHDM4YQPUlMWBcFcBlwUCUquB75IBJkQsu1P6u5vWEHKa0giyqBHwkE9GwUgArD0h_7ekv9xDoRdehHRINHT13IbneWUONb-ntJvil88Xc_UE6C31vlujprTVdF_o2CzwdfiO9QtM7v6TfY7CYEnWe3qQBwybEMDhLf5ghHZEPnekTfnp5p-Tn5cXd7KqY33y7nn2dF5bXzVAgx65hjVrYEmqpagWVYI1kVvBWLlgLwi6kMRYVL1uwDUpWtkyhqLAGqbiYktPRdxPD_RbToNcuWcyjewzbpEXevuZ1Ptn7KDQSZJk7ZPTkP3QVttHnRbIhU1UpR4qPlI0hpYid3kS3NvFRM9BPsekxNp1j08-x6aeBP79YbxdrbHeS15wyIEYg5S-_xPiv9xu2fwFWlaA5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116754415</pqid></control><display><type>article</type><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</creator><creatorcontrib>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</creatorcontrib><description>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</description><identifier>ISSN: 1436-2228</identifier><identifier>ISSN: 1436-2236</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-024-10356-2</identifier><identifier>PMID: 39153015</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biological materials ; Biomedical and Life Sciences ; bone formation ; bone fractures ; Bone growth ; Bone healing ; Bone histomorphometry ; Bones ; Chemical bonds ; Collagen ; Collagen (type I) ; Collagen (type III) ; Collagen - metabolism ; Defects ; Electron microscopy ; Engineering ; Female ; Fourier transform infrared spectroscopy ; Fourier transforms ; Fractures ; Freshwater &amp; Marine Ecology ; Healing ; Histology ; Immunohistochemistry ; In vivo methods and tests ; Infrared spectroscopy ; Life Sciences ; Marine biology ; Marine invertebrates ; Microbiology ; Microscopy, Electron, Scanning ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis - pathology ; Osteoporotic Fractures ; Osteoprotegerin ; Porifera - chemistry ; Rats ; Rats, Wistar ; Scaffolds ; Scanning electron microscopy ; Silicon Dioxide - chemistry ; Spectroscopy, Fourier Transform Infrared ; Spicules ; Tibia ; Tissue Scaffolds - chemistry ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1053-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-024-10356-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-024-10356-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39153015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de A. Cruz, Matheus</creatorcontrib><creatorcontrib>Sousa, Karolyne S. J.</creatorcontrib><creatorcontrib>Avanzi, Ingrid R.</creatorcontrib><creatorcontrib>de Souza, Amanda</creatorcontrib><creatorcontrib>Martignago, Cintia C. S.</creatorcontrib><creatorcontrib>Delpupo, Fernanda V. B.</creatorcontrib><creatorcontrib>Simões, Mariana C.</creatorcontrib><creatorcontrib>Parisi, Julia R.</creatorcontrib><creatorcontrib>Assis, Livia</creatorcontrib><creatorcontrib>De Oliveira, Flávia</creatorcontrib><creatorcontrib>Granito, Renata N.</creatorcontrib><creatorcontrib>Laakso, Eeva-Liisa</creatorcontrib><creatorcontrib>Renno, Ana</creatorcontrib><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</description><subject>Animals</subject><subject>Biological materials</subject><subject>Biomedical and Life Sciences</subject><subject>bone formation</subject><subject>bone fractures</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone histomorphometry</subject><subject>Bones</subject><subject>Chemical bonds</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type III)</subject><subject>Collagen - metabolism</subject><subject>Defects</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Female</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Fractures</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Healing</subject><subject>Histology</subject><subject>Immunohistochemistry</subject><subject>In vivo methods and tests</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences</subject><subject>Marine biology</subject><subject>Marine invertebrates</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis - pathology</subject><subject>Osteoporotic Fractures</subject><subject>Osteoprotegerin</subject><subject>Porifera - chemistry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spicules</subject><subject>Tibia</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPGzEUhS1E1UDoH2BRWWLDZuj1YzwzyxJBQYpEVWi3luO5kzqd2MGeIPHvaxhIpS5g5Sv5O-c-DiHHDM4YQPUlMWBcFcBlwUCUquB75IBJkQsu1P6u5vWEHKa0giyqBHwkE9GwUgArD0h_7ekv9xDoRdehHRINHT13IbneWUONb-ntJvil88Xc_UE6C31vlujprTVdF_o2CzwdfiO9QtM7v6TfY7CYEnWe3qQBwybEMDhLf5ghHZEPnekTfnp5p-Tn5cXd7KqY33y7nn2dF5bXzVAgx65hjVrYEmqpagWVYI1kVvBWLlgLwi6kMRYVL1uwDUpWtkyhqLAGqbiYktPRdxPD_RbToNcuWcyjewzbpEXevuZ1Ptn7KDQSZJk7ZPTkP3QVttHnRbIhU1UpR4qPlI0hpYid3kS3NvFRM9BPsekxNp1j08-x6aeBP79YbxdrbHeS15wyIEYg5S-_xPiv9xu2fwFWlaA5</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>de A. Cruz, Matheus</creator><creator>Sousa, Karolyne S. J.</creator><creator>Avanzi, Ingrid R.</creator><creator>de Souza, Amanda</creator><creator>Martignago, Cintia C. S.</creator><creator>Delpupo, Fernanda V. B.</creator><creator>Simões, Mariana C.</creator><creator>Parisi, Julia R.</creator><creator>Assis, Livia</creator><creator>De Oliveira, Flávia</creator><creator>Granito, Renata N.</creator><creator>Laakso, Eeva-Liisa</creator><creator>Renno, Ana</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241001</creationdate><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><author>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological materials</topic><topic>Biomedical and Life Sciences</topic><topic>bone formation</topic><topic>bone fractures</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone histomorphometry</topic><topic>Bones</topic><topic>Chemical bonds</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type III)</topic><topic>Collagen - metabolism</topic><topic>Defects</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Female</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Fractures</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Healing</topic><topic>Histology</topic><topic>Immunohistochemistry</topic><topic>In vivo methods and tests</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences</topic><topic>Marine biology</topic><topic>Marine invertebrates</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis - pathology</topic><topic>Osteoporotic Fractures</topic><topic>Osteoprotegerin</topic><topic>Porifera - chemistry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spicules</topic><topic>Tibia</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de A. Cruz, Matheus</creatorcontrib><creatorcontrib>Sousa, Karolyne S. J.</creatorcontrib><creatorcontrib>Avanzi, Ingrid R.</creatorcontrib><creatorcontrib>de Souza, Amanda</creatorcontrib><creatorcontrib>Martignago, Cintia C. S.</creatorcontrib><creatorcontrib>Delpupo, Fernanda V. B.</creatorcontrib><creatorcontrib>Simões, Mariana C.</creatorcontrib><creatorcontrib>Parisi, Julia R.</creatorcontrib><creatorcontrib>Assis, Livia</creatorcontrib><creatorcontrib>De Oliveira, Flávia</creatorcontrib><creatorcontrib>Granito, Renata N.</creatorcontrib><creatorcontrib>Laakso, Eeva-Liisa</creatorcontrib><creatorcontrib>Renno, Ana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de A. Cruz, Matheus</au><au>Sousa, Karolyne S. J.</au><au>Avanzi, Ingrid R.</au><au>de Souza, Amanda</au><au>Martignago, Cintia C. S.</au><au>Delpupo, Fernanda V. B.</au><au>Simões, Mariana C.</au><au>Parisi, Julia R.</au><au>Assis, Livia</au><au>De Oliveira, Flávia</au><au>Granito, Renata N.</au><au>Laakso, Eeva-Liisa</au><au>Renno, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>1053</spage><epage>1066</epage><pages>1053-1066</pages><issn>1436-2228</issn><issn>1436-2236</issn><eissn>1436-2236</eissn><abstract>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39153015</pmid><doi>10.1007/s10126-024-10356-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1053-1066
issn 1436-2228
1436-2236
1436-2236
language eng
recordid cdi_proquest_miscellaneous_3153828356
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biological materials
Biomedical and Life Sciences
bone formation
bone fractures
Bone growth
Bone healing
Bone histomorphometry
Bones
Chemical bonds
Collagen
Collagen (type I)
Collagen (type III)
Collagen - metabolism
Defects
Electron microscopy
Engineering
Female
Fourier transform infrared spectroscopy
Fourier transforms
Fractures
Freshwater & Marine Ecology
Healing
Histology
Immunohistochemistry
In vivo methods and tests
Infrared spectroscopy
Life Sciences
Marine biology
Marine invertebrates
Microbiology
Microscopy, Electron, Scanning
Osteogenesis
Osteogenesis - drug effects
Osteoporosis
Osteoporosis - pathology
Osteoporotic Fractures
Osteoprotegerin
Porifera - chemistry
Rats
Rats, Wistar
Scaffolds
Scanning electron microscopy
Silicon Dioxide - chemistry
Spectroscopy, Fourier Transform Infrared
Spicules
Tibia
Tissue Scaffolds - chemistry
Zoology
title In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Effects%20of%20Biosilica%20and%20Spongin-Like%20Collagen%20Scaffolds%20on%20the%20Healing%20Process%20in%20Osteoporotic%20Rats&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=de%20A.%20Cruz,%20Matheus&rft.date=2024-10-01&rft.volume=26&rft.issue=5&rft.spage=1053&rft.epage=1066&rft.pages=1053-1066&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-024-10356-2&rft_dat=%3Cproquest_cross%3E3094045415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116754415&rft_id=info:pmid/39153015&rfr_iscdi=true