In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats
Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2024-10, Vol.26 (5), p.1053-1066 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1066 |
---|---|
container_issue | 5 |
container_start_page | 1053 |
container_title | Marine biotechnology (New York, N.Y.) |
container_volume | 26 |
creator | de A. Cruz, Matheus Sousa, Karolyne S. J. Avanzi, Ingrid R. de Souza, Amanda Martignago, Cintia C. S. Delpupo, Fernanda V. B. Simões, Mariana C. Parisi, Julia R. Assis, Livia De Oliveira, Flávia Granito, Renata N. Laakso, Eeva-Liisa Renno, Ana |
description | Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies. |
doi_str_mv | 10.1007/s10126-024-10356-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153828356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094045415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</originalsourceid><addsrcrecordid>eNqFkUtPGzEUhS1E1UDoH2BRWWLDZuj1YzwzyxJBQYpEVWi3luO5kzqd2MGeIPHvaxhIpS5g5Sv5O-c-DiHHDM4YQPUlMWBcFcBlwUCUquB75IBJkQsu1P6u5vWEHKa0giyqBHwkE9GwUgArD0h_7ekv9xDoRdehHRINHT13IbneWUONb-ntJvil88Xc_UE6C31vlujprTVdF_o2CzwdfiO9QtM7v6TfY7CYEnWe3qQBwybEMDhLf5ghHZEPnekTfnp5p-Tn5cXd7KqY33y7nn2dF5bXzVAgx65hjVrYEmqpagWVYI1kVvBWLlgLwi6kMRYVL1uwDUpWtkyhqLAGqbiYktPRdxPD_RbToNcuWcyjewzbpEXevuZ1Ptn7KDQSZJk7ZPTkP3QVttHnRbIhU1UpR4qPlI0hpYid3kS3NvFRM9BPsekxNp1j08-x6aeBP79YbxdrbHeS15wyIEYg5S-_xPiv9xu2fwFWlaA5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116754415</pqid></control><display><type>article</type><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</creator><creatorcontrib>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</creatorcontrib><description>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</description><identifier>ISSN: 1436-2228</identifier><identifier>ISSN: 1436-2236</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-024-10356-2</identifier><identifier>PMID: 39153015</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biological materials ; Biomedical and Life Sciences ; bone formation ; bone fractures ; Bone growth ; Bone healing ; Bone histomorphometry ; Bones ; Chemical bonds ; Collagen ; Collagen (type I) ; Collagen (type III) ; Collagen - metabolism ; Defects ; Electron microscopy ; Engineering ; Female ; Fourier transform infrared spectroscopy ; Fourier transforms ; Fractures ; Freshwater & Marine Ecology ; Healing ; Histology ; Immunohistochemistry ; In vivo methods and tests ; Infrared spectroscopy ; Life Sciences ; Marine biology ; Marine invertebrates ; Microbiology ; Microscopy, Electron, Scanning ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis - pathology ; Osteoporotic Fractures ; Osteoprotegerin ; Porifera - chemistry ; Rats ; Rats, Wistar ; Scaffolds ; Scanning electron microscopy ; Silicon Dioxide - chemistry ; Spectroscopy, Fourier Transform Infrared ; Spicules ; Tibia ; Tissue Scaffolds - chemistry ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1053-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-024-10356-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-024-10356-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39153015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de A. Cruz, Matheus</creatorcontrib><creatorcontrib>Sousa, Karolyne S. J.</creatorcontrib><creatorcontrib>Avanzi, Ingrid R.</creatorcontrib><creatorcontrib>de Souza, Amanda</creatorcontrib><creatorcontrib>Martignago, Cintia C. S.</creatorcontrib><creatorcontrib>Delpupo, Fernanda V. B.</creatorcontrib><creatorcontrib>Simões, Mariana C.</creatorcontrib><creatorcontrib>Parisi, Julia R.</creatorcontrib><creatorcontrib>Assis, Livia</creatorcontrib><creatorcontrib>De Oliveira, Flávia</creatorcontrib><creatorcontrib>Granito, Renata N.</creatorcontrib><creatorcontrib>Laakso, Eeva-Liisa</creatorcontrib><creatorcontrib>Renno, Ana</creatorcontrib><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</description><subject>Animals</subject><subject>Biological materials</subject><subject>Biomedical and Life Sciences</subject><subject>bone formation</subject><subject>bone fractures</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone histomorphometry</subject><subject>Bones</subject><subject>Chemical bonds</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type III)</subject><subject>Collagen - metabolism</subject><subject>Defects</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Female</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Fractures</subject><subject>Freshwater & Marine Ecology</subject><subject>Healing</subject><subject>Histology</subject><subject>Immunohistochemistry</subject><subject>In vivo methods and tests</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences</subject><subject>Marine biology</subject><subject>Marine invertebrates</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis - pathology</subject><subject>Osteoporotic Fractures</subject><subject>Osteoprotegerin</subject><subject>Porifera - chemistry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spicules</subject><subject>Tibia</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPGzEUhS1E1UDoH2BRWWLDZuj1YzwzyxJBQYpEVWi3luO5kzqd2MGeIPHvaxhIpS5g5Sv5O-c-DiHHDM4YQPUlMWBcFcBlwUCUquB75IBJkQsu1P6u5vWEHKa0giyqBHwkE9GwUgArD0h_7ekv9xDoRdehHRINHT13IbneWUONb-ntJvil88Xc_UE6C31vlujprTVdF_o2CzwdfiO9QtM7v6TfY7CYEnWe3qQBwybEMDhLf5ghHZEPnekTfnp5p-Tn5cXd7KqY33y7nn2dF5bXzVAgx65hjVrYEmqpagWVYI1kVvBWLlgLwi6kMRYVL1uwDUpWtkyhqLAGqbiYktPRdxPD_RbToNcuWcyjewzbpEXevuZ1Ptn7KDQSZJk7ZPTkP3QVttHnRbIhU1UpR4qPlI0hpYid3kS3NvFRM9BPsekxNp1j08-x6aeBP79YbxdrbHeS15wyIEYg5S-_xPiv9xu2fwFWlaA5</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>de A. Cruz, Matheus</creator><creator>Sousa, Karolyne S. J.</creator><creator>Avanzi, Ingrid R.</creator><creator>de Souza, Amanda</creator><creator>Martignago, Cintia C. S.</creator><creator>Delpupo, Fernanda V. B.</creator><creator>Simões, Mariana C.</creator><creator>Parisi, Julia R.</creator><creator>Assis, Livia</creator><creator>De Oliveira, Flávia</creator><creator>Granito, Renata N.</creator><creator>Laakso, Eeva-Liisa</creator><creator>Renno, Ana</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241001</creationdate><title>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</title><author>de A. Cruz, Matheus ; Sousa, Karolyne S. J. ; Avanzi, Ingrid R. ; de Souza, Amanda ; Martignago, Cintia C. S. ; Delpupo, Fernanda V. B. ; Simões, Mariana C. ; Parisi, Julia R. ; Assis, Livia ; De Oliveira, Flávia ; Granito, Renata N. ; Laakso, Eeva-Liisa ; Renno, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e2ef9196bc50846860731941c32d4b1d03cb4aace625d0c9e415d16e37e804623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological materials</topic><topic>Biomedical and Life Sciences</topic><topic>bone formation</topic><topic>bone fractures</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone histomorphometry</topic><topic>Bones</topic><topic>Chemical bonds</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type III)</topic><topic>Collagen - metabolism</topic><topic>Defects</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Female</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Fractures</topic><topic>Freshwater & Marine Ecology</topic><topic>Healing</topic><topic>Histology</topic><topic>Immunohistochemistry</topic><topic>In vivo methods and tests</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences</topic><topic>Marine biology</topic><topic>Marine invertebrates</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis - pathology</topic><topic>Osteoporotic Fractures</topic><topic>Osteoprotegerin</topic><topic>Porifera - chemistry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spicules</topic><topic>Tibia</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de A. Cruz, Matheus</creatorcontrib><creatorcontrib>Sousa, Karolyne S. J.</creatorcontrib><creatorcontrib>Avanzi, Ingrid R.</creatorcontrib><creatorcontrib>de Souza, Amanda</creatorcontrib><creatorcontrib>Martignago, Cintia C. S.</creatorcontrib><creatorcontrib>Delpupo, Fernanda V. B.</creatorcontrib><creatorcontrib>Simões, Mariana C.</creatorcontrib><creatorcontrib>Parisi, Julia R.</creatorcontrib><creatorcontrib>Assis, Livia</creatorcontrib><creatorcontrib>De Oliveira, Flávia</creatorcontrib><creatorcontrib>Granito, Renata N.</creatorcontrib><creatorcontrib>Laakso, Eeva-Liisa</creatorcontrib><creatorcontrib>Renno, Ana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de A. Cruz, Matheus</au><au>Sousa, Karolyne S. J.</au><au>Avanzi, Ingrid R.</au><au>de Souza, Amanda</au><au>Martignago, Cintia C. S.</au><au>Delpupo, Fernanda V. B.</au><au>Simões, Mariana C.</au><au>Parisi, Julia R.</au><au>Assis, Livia</au><au>De Oliveira, Flávia</au><au>Granito, Renata N.</au><au>Laakso, Eeva-Liisa</au><au>Renno, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>1053</spage><epage>1066</epage><pages>1053-1066</pages><issn>1436-2228</issn><issn>1436-2236</issn><eissn>1436-2236</eissn><abstract>Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39153015</pmid><doi>10.1007/s10126-024-10356-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-2228 |
ispartof | Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1053-1066 |
issn | 1436-2228 1436-2236 1436-2236 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153828356 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biological materials Biomedical and Life Sciences bone formation bone fractures Bone growth Bone healing Bone histomorphometry Bones Chemical bonds Collagen Collagen (type I) Collagen (type III) Collagen - metabolism Defects Electron microscopy Engineering Female Fourier transform infrared spectroscopy Fourier transforms Fractures Freshwater & Marine Ecology Healing Histology Immunohistochemistry In vivo methods and tests Infrared spectroscopy Life Sciences Marine biology Marine invertebrates Microbiology Microscopy, Electron, Scanning Osteogenesis Osteogenesis - drug effects Osteoporosis Osteoporosis - pathology Osteoporotic Fractures Osteoprotegerin Porifera - chemistry Rats Rats, Wistar Scaffolds Scanning electron microscopy Silicon Dioxide - chemistry Spectroscopy, Fourier Transform Infrared Spicules Tibia Tissue Scaffolds - chemistry Zoology |
title | In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Effects%20of%20Biosilica%20and%20Spongin-Like%20Collagen%20Scaffolds%20on%20the%20Healing%20Process%20in%20Osteoporotic%20Rats&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=de%20A.%20Cruz,%20Matheus&rft.date=2024-10-01&rft.volume=26&rft.issue=5&rft.spage=1053&rft.epage=1066&rft.pages=1053-1066&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-024-10356-2&rft_dat=%3Cproquest_cross%3E3094045415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116754415&rft_id=info:pmid/39153015&rfr_iscdi=true |