LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway

Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2025-03, Vol.314, p.122873, Article 122873
Hauptverfasser: Pang, Xuening, Zhang, Tongling, Li, Jiazheng, Yu, Liqun, Liu, Zhibo, Liu, Yuchen, Li, Li, Cheng, Liming, Zhu, Rongrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122873
container_title Biomaterials
container_volume 314
creator Pang, Xuening
Zhang, Tongling
Li, Jiazheng
Yu, Liqun
Liu, Zhibo
Liu, Yuchen
Li, Li
Cheng, Liming
Zhu, Rongrong
description Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.
doi_str_mv 10.1016/j.biomaterials.2024.122873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153823211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224004071</els_id><sourcerecordid>3113747365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</originalsourceid><addsrcrecordid>eNqNkc2O0zAURiMEYsrAKyCLFZu0_kkcl91oBphKRUgjWFuOfZPcktjFTmZUXpDXIp0WxHJW1pXP_a70nSx7x-iSUSZXu2WNYTAjRDR9WnLKiyXjXFXiWbZgqlJ5uabl82xBWcHztWT8InuV0o7OMy34y-xCrIVcy4oust_bm1vijQ97E0e0PaTchT04YqHvpz4kePxtsIZIkjVNE3qXyAOOHTE9tn5GB7Qx2M54D30iDiPYkXTYdjk0DVoEbw_EwxRNTyK04CGaEYMnxjsSYms8_ppjzoTFaCccZ3IIDnr0LRm7GKa2I3dduFrdBftj9eUQEnqy2ZC9GbsHc3idvWjmMuDN-b3Mvn_6-O36Nt9-_by5vtrmlis55sxRAUAL1oi6lG4tLVWW1UBtIThjtRHcKitkTavGCOFAOQpQcqUKKRWtxWX2_pS7j-HnBGnUA6ZjV8ZDmJIWrBSKH7OegDJRFZWQ5Yx-OKFzkSlFaPQ-4mDiQTOqj871Tv_vXB-d65Pzefnt-c5UD-D-rf6VPAM3J2DWA_cIUadHKXBSpV3Ap9z5A1pWybI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113747365</pqid></control><display><type>article</type><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</creator><creatorcontrib>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</creatorcontrib><description>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122873</identifier><identifier>PMID: 39369670</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Aligned microchannels ; animal injuries ; Animals ; astrocytes ; axons ; biocompatible materials ; cellulose ; Cellulose - chemistry ; Cellulose nanofiber ; cellulose nanofibers ; electrophysiology ; Female ; genes ; Hydroxides - chemistry ; Hydroxides - pharmacology ; Mice ; Mice, Inbred C57BL ; microstructure ; myosin ; Myosin II ; Myosin Type II - metabolism ; Nanofibers - chemistry ; Nanoparticles - chemistry ; Nerve regeneration ; Nerve Regeneration - drug effects ; Neural Stem Cells - cytology ; Neural Stem Cells - drug effects ; Neural Stem Cells - metabolism ; neurogenesis ; retinoic acid ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; sequence analysis ; Signal Transduction - drug effects ; spinal cord ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy ; Spinal cord injury ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2025-03, Vol.314, p.122873, Article 122873</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</cites><orcidid>0000-0001-6545-858X ; 0000-0002-3955-5965 ; 0000-0001-9494-8211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961224004071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39369670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Zhang, Tongling</creatorcontrib><creatorcontrib>Li, Jiazheng</creatorcontrib><creatorcontrib>Yu, Liqun</creatorcontrib><creatorcontrib>Liu, Zhibo</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cheng, Liming</creatorcontrib><creatorcontrib>Zhu, Rongrong</creatorcontrib><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</description><subject>Aligned microchannels</subject><subject>animal injuries</subject><subject>Animals</subject><subject>astrocytes</subject><subject>axons</subject><subject>biocompatible materials</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose nanofiber</subject><subject>cellulose nanofibers</subject><subject>electrophysiology</subject><subject>Female</subject><subject>genes</subject><subject>Hydroxides - chemistry</subject><subject>Hydroxides - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microstructure</subject><subject>myosin</subject><subject>Myosin II</subject><subject>Myosin Type II - metabolism</subject><subject>Nanofibers - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nerve regeneration</subject><subject>Nerve Regeneration - drug effects</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neural Stem Cells - metabolism</subject><subject>neurogenesis</subject><subject>retinoic acid</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>sequence analysis</subject><subject>Signal Transduction - drug effects</subject><subject>spinal cord</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Spinal cord injury</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURiMEYsrAKyCLFZu0_kkcl91oBphKRUgjWFuOfZPcktjFTmZUXpDXIp0WxHJW1pXP_a70nSx7x-iSUSZXu2WNYTAjRDR9WnLKiyXjXFXiWbZgqlJ5uabl82xBWcHztWT8InuV0o7OMy34y-xCrIVcy4oust_bm1vijQ97E0e0PaTchT04YqHvpz4kePxtsIZIkjVNE3qXyAOOHTE9tn5GB7Qx2M54D30iDiPYkXTYdjk0DVoEbw_EwxRNTyK04CGaEYMnxjsSYms8_ppjzoTFaCccZ3IIDnr0LRm7GKa2I3dduFrdBftj9eUQEnqy2ZC9GbsHc3idvWjmMuDN-b3Mvn_6-O36Nt9-_by5vtrmlis55sxRAUAL1oi6lG4tLVWW1UBtIThjtRHcKitkTavGCOFAOQpQcqUKKRWtxWX2_pS7j-HnBGnUA6ZjV8ZDmJIWrBSKH7OegDJRFZWQ5Yx-OKFzkSlFaPQ-4mDiQTOqj871Tv_vXB-d65Pzefnt-c5UD-D-rf6VPAM3J2DWA_cIUadHKXBSpV3Ap9z5A1pWybI</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Pang, Xuening</creator><creator>Zhang, Tongling</creator><creator>Li, Jiazheng</creator><creator>Yu, Liqun</creator><creator>Liu, Zhibo</creator><creator>Liu, Yuchen</creator><creator>Li, Li</creator><creator>Cheng, Liming</creator><creator>Zhu, Rongrong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6545-858X</orcidid><orcidid>https://orcid.org/0000-0002-3955-5965</orcidid><orcidid>https://orcid.org/0000-0001-9494-8211</orcidid></search><sort><creationdate>202503</creationdate><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><author>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aligned microchannels</topic><topic>animal injuries</topic><topic>Animals</topic><topic>astrocytes</topic><topic>axons</topic><topic>biocompatible materials</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose nanofiber</topic><topic>cellulose nanofibers</topic><topic>electrophysiology</topic><topic>Female</topic><topic>genes</topic><topic>Hydroxides - chemistry</topic><topic>Hydroxides - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microstructure</topic><topic>myosin</topic><topic>Myosin II</topic><topic>Myosin Type II - metabolism</topic><topic>Nanofibers - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nerve regeneration</topic><topic>Nerve Regeneration - drug effects</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neural Stem Cells - metabolism</topic><topic>neurogenesis</topic><topic>retinoic acid</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>sequence analysis</topic><topic>Signal Transduction - drug effects</topic><topic>spinal cord</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Spinal cord injury</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Zhang, Tongling</creatorcontrib><creatorcontrib>Li, Jiazheng</creatorcontrib><creatorcontrib>Yu, Liqun</creatorcontrib><creatorcontrib>Liu, Zhibo</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cheng, Liming</creatorcontrib><creatorcontrib>Zhu, Rongrong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xuening</au><au>Zhang, Tongling</au><au>Li, Jiazheng</au><au>Yu, Liqun</au><au>Liu, Zhibo</au><au>Liu, Yuchen</au><au>Li, Li</au><au>Cheng, Liming</au><au>Zhu, Rongrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-03</date><risdate>2025</risdate><volume>314</volume><spage>122873</spage><pages>122873-</pages><artnum>122873</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39369670</pmid><doi>10.1016/j.biomaterials.2024.122873</doi><orcidid>https://orcid.org/0000-0001-6545-858X</orcidid><orcidid>https://orcid.org/0000-0002-3955-5965</orcidid><orcidid>https://orcid.org/0000-0001-9494-8211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2025-03, Vol.314, p.122873, Article 122873
issn 0142-9612
1878-5905
1878-5905
language eng
recordid cdi_proquest_miscellaneous_3153823211
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aligned microchannels
animal injuries
Animals
astrocytes
axons
biocompatible materials
cellulose
Cellulose - chemistry
Cellulose nanofiber
cellulose nanofibers
electrophysiology
Female
genes
Hydroxides - chemistry
Hydroxides - pharmacology
Mice
Mice, Inbred C57BL
microstructure
myosin
Myosin II
Myosin Type II - metabolism
Nanofibers - chemistry
Nanoparticles - chemistry
Nerve regeneration
Nerve Regeneration - drug effects
Neural Stem Cells - cytology
Neural Stem Cells - drug effects
Neural Stem Cells - metabolism
neurogenesis
retinoic acid
rho-Associated Kinases - metabolism
rhoA GTP-Binding Protein - metabolism
sequence analysis
Signal Transduction - drug effects
spinal cord
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - therapy
Spinal cord injury
Tissue Scaffolds - chemistry
title LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDH%20nanoparticles-doped%20cellulose%20nanofiber%20scaffolds%20with%20aligned%20microchannels%20direct%20high-efficiency%20neural%20regeneration%20and%20organized%20neural%20circuit%20remodeling%20through%20RhoA/Rock/Myosin%20II%20pathway&rft.jtitle=Biomaterials&rft.au=Pang,%20Xuening&rft.date=2025-03&rft.volume=314&rft.spage=122873&rft.pages=122873-&rft.artnum=122873&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122873&rft_dat=%3Cproquest_cross%3E3113747365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113747365&rft_id=info:pmid/39369670&rft_els_id=S0142961224004071&rfr_iscdi=true