LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway
Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for ne...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2025-03, Vol.314, p.122873, Article 122873 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122873 |
container_title | Biomaterials |
container_volume | 314 |
creator | Pang, Xuening Zhang, Tongling Li, Jiazheng Yu, Liqun Liu, Zhibo Liu, Yuchen Li, Li Cheng, Liming Zhu, Rongrong |
description | Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury. |
doi_str_mv | 10.1016/j.biomaterials.2024.122873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153823211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224004071</els_id><sourcerecordid>3113747365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</originalsourceid><addsrcrecordid>eNqNkc2O0zAURiMEYsrAKyCLFZu0_kkcl91oBphKRUgjWFuOfZPcktjFTmZUXpDXIp0WxHJW1pXP_a70nSx7x-iSUSZXu2WNYTAjRDR9WnLKiyXjXFXiWbZgqlJ5uabl82xBWcHztWT8InuV0o7OMy34y-xCrIVcy4oust_bm1vijQ97E0e0PaTchT04YqHvpz4kePxtsIZIkjVNE3qXyAOOHTE9tn5GB7Qx2M54D30iDiPYkXTYdjk0DVoEbw_EwxRNTyK04CGaEYMnxjsSYms8_ppjzoTFaCccZ3IIDnr0LRm7GKa2I3dduFrdBftj9eUQEnqy2ZC9GbsHc3idvWjmMuDN-b3Mvn_6-O36Nt9-_by5vtrmlis55sxRAUAL1oi6lG4tLVWW1UBtIThjtRHcKitkTavGCOFAOQpQcqUKKRWtxWX2_pS7j-HnBGnUA6ZjV8ZDmJIWrBSKH7OegDJRFZWQ5Yx-OKFzkSlFaPQ-4mDiQTOqj871Tv_vXB-d65Pzefnt-c5UD-D-rf6VPAM3J2DWA_cIUadHKXBSpV3Ap9z5A1pWybI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113747365</pqid></control><display><type>article</type><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</creator><creatorcontrib>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</creatorcontrib><description>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122873</identifier><identifier>PMID: 39369670</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Aligned microchannels ; animal injuries ; Animals ; astrocytes ; axons ; biocompatible materials ; cellulose ; Cellulose - chemistry ; Cellulose nanofiber ; cellulose nanofibers ; electrophysiology ; Female ; genes ; Hydroxides - chemistry ; Hydroxides - pharmacology ; Mice ; Mice, Inbred C57BL ; microstructure ; myosin ; Myosin II ; Myosin Type II - metabolism ; Nanofibers - chemistry ; Nanoparticles - chemistry ; Nerve regeneration ; Nerve Regeneration - drug effects ; Neural Stem Cells - cytology ; Neural Stem Cells - drug effects ; Neural Stem Cells - metabolism ; neurogenesis ; retinoic acid ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; sequence analysis ; Signal Transduction - drug effects ; spinal cord ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy ; Spinal cord injury ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2025-03, Vol.314, p.122873, Article 122873</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</cites><orcidid>0000-0001-6545-858X ; 0000-0002-3955-5965 ; 0000-0001-9494-8211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961224004071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39369670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Zhang, Tongling</creatorcontrib><creatorcontrib>Li, Jiazheng</creatorcontrib><creatorcontrib>Yu, Liqun</creatorcontrib><creatorcontrib>Liu, Zhibo</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cheng, Liming</creatorcontrib><creatorcontrib>Zhu, Rongrong</creatorcontrib><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</description><subject>Aligned microchannels</subject><subject>animal injuries</subject><subject>Animals</subject><subject>astrocytes</subject><subject>axons</subject><subject>biocompatible materials</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose nanofiber</subject><subject>cellulose nanofibers</subject><subject>electrophysiology</subject><subject>Female</subject><subject>genes</subject><subject>Hydroxides - chemistry</subject><subject>Hydroxides - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microstructure</subject><subject>myosin</subject><subject>Myosin II</subject><subject>Myosin Type II - metabolism</subject><subject>Nanofibers - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nerve regeneration</subject><subject>Nerve Regeneration - drug effects</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neural Stem Cells - metabolism</subject><subject>neurogenesis</subject><subject>retinoic acid</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>sequence analysis</subject><subject>Signal Transduction - drug effects</subject><subject>spinal cord</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Spinal cord injury</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURiMEYsrAKyCLFZu0_kkcl91oBphKRUgjWFuOfZPcktjFTmZUXpDXIp0WxHJW1pXP_a70nSx7x-iSUSZXu2WNYTAjRDR9WnLKiyXjXFXiWbZgqlJ5uabl82xBWcHztWT8InuV0o7OMy34y-xCrIVcy4oust_bm1vijQ97E0e0PaTchT04YqHvpz4kePxtsIZIkjVNE3qXyAOOHTE9tn5GB7Qx2M54D30iDiPYkXTYdjk0DVoEbw_EwxRNTyK04CGaEYMnxjsSYms8_ppjzoTFaCccZ3IIDnr0LRm7GKa2I3dduFrdBftj9eUQEnqy2ZC9GbsHc3idvWjmMuDN-b3Mvn_6-O36Nt9-_by5vtrmlis55sxRAUAL1oi6lG4tLVWW1UBtIThjtRHcKitkTavGCOFAOQpQcqUKKRWtxWX2_pS7j-HnBGnUA6ZjV8ZDmJIWrBSKH7OegDJRFZWQ5Yx-OKFzkSlFaPQ-4mDiQTOqj871Tv_vXB-d65Pzefnt-c5UD-D-rf6VPAM3J2DWA_cIUadHKXBSpV3Ap9z5A1pWybI</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Pang, Xuening</creator><creator>Zhang, Tongling</creator><creator>Li, Jiazheng</creator><creator>Yu, Liqun</creator><creator>Liu, Zhibo</creator><creator>Liu, Yuchen</creator><creator>Li, Li</creator><creator>Cheng, Liming</creator><creator>Zhu, Rongrong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6545-858X</orcidid><orcidid>https://orcid.org/0000-0002-3955-5965</orcidid><orcidid>https://orcid.org/0000-0001-9494-8211</orcidid></search><sort><creationdate>202503</creationdate><title>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</title><author>Pang, Xuening ; Zhang, Tongling ; Li, Jiazheng ; Yu, Liqun ; Liu, Zhibo ; Liu, Yuchen ; Li, Li ; Cheng, Liming ; Zhu, Rongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-1d03ee041f3b56d96c08c1be0c43211ba32c8c36b07fa33de8d0ee528846680b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aligned microchannels</topic><topic>animal injuries</topic><topic>Animals</topic><topic>astrocytes</topic><topic>axons</topic><topic>biocompatible materials</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose nanofiber</topic><topic>cellulose nanofibers</topic><topic>electrophysiology</topic><topic>Female</topic><topic>genes</topic><topic>Hydroxides - chemistry</topic><topic>Hydroxides - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microstructure</topic><topic>myosin</topic><topic>Myosin II</topic><topic>Myosin Type II - metabolism</topic><topic>Nanofibers - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nerve regeneration</topic><topic>Nerve Regeneration - drug effects</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neural Stem Cells - metabolism</topic><topic>neurogenesis</topic><topic>retinoic acid</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>sequence analysis</topic><topic>Signal Transduction - drug effects</topic><topic>spinal cord</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Spinal cord injury</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xuening</creatorcontrib><creatorcontrib>Zhang, Tongling</creatorcontrib><creatorcontrib>Li, Jiazheng</creatorcontrib><creatorcontrib>Yu, Liqun</creatorcontrib><creatorcontrib>Liu, Zhibo</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cheng, Liming</creatorcontrib><creatorcontrib>Zhu, Rongrong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xuening</au><au>Zhang, Tongling</au><au>Li, Jiazheng</au><au>Yu, Liqun</au><au>Liu, Zhibo</au><au>Liu, Yuchen</au><au>Li, Li</au><au>Cheng, Liming</au><au>Zhu, Rongrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-03</date><risdate>2025</risdate><volume>314</volume><spage>122873</spage><pages>122873-</pages><artnum>122873</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39369670</pmid><doi>10.1016/j.biomaterials.2024.122873</doi><orcidid>https://orcid.org/0000-0001-6545-858X</orcidid><orcidid>https://orcid.org/0000-0002-3955-5965</orcidid><orcidid>https://orcid.org/0000-0001-9494-8211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2025-03, Vol.314, p.122873, Article 122873 |
issn | 0142-9612 1878-5905 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153823211 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aligned microchannels animal injuries Animals astrocytes axons biocompatible materials cellulose Cellulose - chemistry Cellulose nanofiber cellulose nanofibers electrophysiology Female genes Hydroxides - chemistry Hydroxides - pharmacology Mice Mice, Inbred C57BL microstructure myosin Myosin II Myosin Type II - metabolism Nanofibers - chemistry Nanoparticles - chemistry Nerve regeneration Nerve Regeneration - drug effects Neural Stem Cells - cytology Neural Stem Cells - drug effects Neural Stem Cells - metabolism neurogenesis retinoic acid rho-Associated Kinases - metabolism rhoA GTP-Binding Protein - metabolism sequence analysis Signal Transduction - drug effects spinal cord Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy Spinal cord injury Tissue Scaffolds - chemistry |
title | LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDH%20nanoparticles-doped%20cellulose%20nanofiber%20scaffolds%20with%20aligned%20microchannels%20direct%20high-efficiency%20neural%20regeneration%20and%20organized%20neural%20circuit%20remodeling%20through%20RhoA/Rock/Myosin%20II%20pathway&rft.jtitle=Biomaterials&rft.au=Pang,%20Xuening&rft.date=2025-03&rft.volume=314&rft.spage=122873&rft.pages=122873-&rft.artnum=122873&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122873&rft_dat=%3Cproquest_cross%3E3113747365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113747365&rft_id=info:pmid/39369670&rft_els_id=S0142961224004071&rfr_iscdi=true |