Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems

Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2024-09, Vol.33 (18), p.e17500-n/a
Hauptverfasser: Day, Casey C., Alò, Dominique, Simmons, Ryan K., Cotey, Stacy R., Zarn, Katherine E., Gazeley, Ian F., Small, Maureen, Fortin, Marie‐Josee, Bearlin, Andrew R., Smith, Seth R., Landguth, Erin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e17500
container_title Molecular ecology
container_volume 33
creator Day, Casey C.
Alò, Dominique
Simmons, Ryan K.
Cotey, Stacy R.
Zarn, Katherine E.
Gazeley, Ian F.
Small, Maureen
Fortin, Marie‐Josee
Bearlin, Andrew R.
Smith, Seth R.
Landguth, Erin L.
description Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.
doi_str_mv 10.1111/mec.17500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153822124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153822124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</originalsourceid><addsrcrecordid>eNqF0U9rFDEcxvEgit1WD74BCXix4LT5P5OjrK0KFS8K3oYk88uaMpNsk5nqvvtm3dpDQRwIc_nwheRB6BUlZ7R-5xO4M9pKQp6gFeVKNkyLH0_RimjFGko6foSOS7kmhHIm5XN0xDXtOqLlCv3-EArE2cTNGOIGg_fg5oKTx0MoW8jFjO8wxNuQU5wqxCYO9cw_c9qmDcTgsDU5hypxitgv0c0hRTNil2KsrXAb5h0OEZubxcyVl12ZYSov0DNvxgIv7_8n6Pvlxbf1p-bq68fP6_dXjeNCkYa3HXRKCGvUYBk1nfdWmM4aJ1slmAeuNQUmvaVGWyOkk5YIweSgQJhB8xP09tDd5nSzQJn7KRQH42gipKX0nEreMUaZ-D8luhWa83ZfffOIXqcl12vvg7Q-u1RqHzw9KJdTKRl8v81hMnnXU9Lvl-vrcv2f5ap9fV9c7ATDg_w7VQXnB_ArjLD7d6n_crE-JO8AYCOkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119625664</pqid></control><display><type>article</type><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</creator><creatorcontrib>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</creatorcontrib><description>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17500</identifier><identifier>PMID: 39188095</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal Distribution ; Animals ; Anthropogenic Effects ; Anthropogenic factors ; Aquatic animals ; Aquatic environment ; CDMetaPOP ; Cluster analysis ; Computer Simulation ; computer simulations ; data collection ; Dispersal ; dispersal behavior ; dispersal behaviour ; Ecological effects ; Ecosystem ; Environment ; Environmental restoration ; Genetic analysis ; Genetic structure ; Genetics ; Genetics, Population ; habitat fragmentation ; landscape connectivity ; landscape genetics ; Landscape preservation ; landscapes ; Microsatellite Repeats - genetics ; Movement ecology ; Oncorhynchus - genetics ; Oncorhynchus clarkii ; Pattern analysis ; Population ; Population genetics ; Population structure ; Rivers ; riverscape genetics ; Salmon ; Sampling ; streams ; Structure-function relationships</subject><ispartof>Molecular ecology, 2024-09, Vol.33 (18), p.e17500-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</cites><orcidid>0000-0002-7044-346X ; 0000-0001-6096-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.17500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.17500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39188095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, Casey C.</creatorcontrib><creatorcontrib>Alò, Dominique</creatorcontrib><creatorcontrib>Simmons, Ryan K.</creatorcontrib><creatorcontrib>Cotey, Stacy R.</creatorcontrib><creatorcontrib>Zarn, Katherine E.</creatorcontrib><creatorcontrib>Gazeley, Ian F.</creatorcontrib><creatorcontrib>Small, Maureen</creatorcontrib><creatorcontrib>Fortin, Marie‐Josee</creatorcontrib><creatorcontrib>Bearlin, Andrew R.</creatorcontrib><creatorcontrib>Smith, Seth R.</creatorcontrib><creatorcontrib>Landguth, Erin L.</creatorcontrib><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</description><subject>Animal Distribution</subject><subject>Animals</subject><subject>Anthropogenic Effects</subject><subject>Anthropogenic factors</subject><subject>Aquatic animals</subject><subject>Aquatic environment</subject><subject>CDMetaPOP</subject><subject>Cluster analysis</subject><subject>Computer Simulation</subject><subject>computer simulations</subject><subject>data collection</subject><subject>Dispersal</subject><subject>dispersal behavior</subject><subject>dispersal behaviour</subject><subject>Ecological effects</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Environmental restoration</subject><subject>Genetic analysis</subject><subject>Genetic structure</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>habitat fragmentation</subject><subject>landscape connectivity</subject><subject>landscape genetics</subject><subject>Landscape preservation</subject><subject>landscapes</subject><subject>Microsatellite Repeats - genetics</subject><subject>Movement ecology</subject><subject>Oncorhynchus - genetics</subject><subject>Oncorhynchus clarkii</subject><subject>Pattern analysis</subject><subject>Population</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Rivers</subject><subject>riverscape genetics</subject><subject>Salmon</subject><subject>Sampling</subject><subject>streams</subject><subject>Structure-function relationships</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9rFDEcxvEgit1WD74BCXix4LT5P5OjrK0KFS8K3oYk88uaMpNsk5nqvvtm3dpDQRwIc_nwheRB6BUlZ7R-5xO4M9pKQp6gFeVKNkyLH0_RimjFGko6foSOS7kmhHIm5XN0xDXtOqLlCv3-EArE2cTNGOIGg_fg5oKTx0MoW8jFjO8wxNuQU5wqxCYO9cw_c9qmDcTgsDU5hypxitgv0c0hRTNil2KsrXAb5h0OEZubxcyVl12ZYSov0DNvxgIv7_8n6Pvlxbf1p-bq68fP6_dXjeNCkYa3HXRKCGvUYBk1nfdWmM4aJ1slmAeuNQUmvaVGWyOkk5YIweSgQJhB8xP09tDd5nSzQJn7KRQH42gipKX0nEreMUaZ-D8luhWa83ZfffOIXqcl12vvg7Q-u1RqHzw9KJdTKRl8v81hMnnXU9Lvl-vrcv2f5ap9fV9c7ATDg_w7VQXnB_ArjLD7d6n_crE-JO8AYCOkRQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Day, Casey C.</creator><creator>Alò, Dominique</creator><creator>Simmons, Ryan K.</creator><creator>Cotey, Stacy R.</creator><creator>Zarn, Katherine E.</creator><creator>Gazeley, Ian F.</creator><creator>Small, Maureen</creator><creator>Fortin, Marie‐Josee</creator><creator>Bearlin, Andrew R.</creator><creator>Smith, Seth R.</creator><creator>Landguth, Erin L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7044-346X</orcidid><orcidid>https://orcid.org/0000-0001-6096-3448</orcidid></search><sort><creationdate>202409</creationdate><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><author>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal Distribution</topic><topic>Animals</topic><topic>Anthropogenic Effects</topic><topic>Anthropogenic factors</topic><topic>Aquatic animals</topic><topic>Aquatic environment</topic><topic>CDMetaPOP</topic><topic>Cluster analysis</topic><topic>Computer Simulation</topic><topic>computer simulations</topic><topic>data collection</topic><topic>Dispersal</topic><topic>dispersal behavior</topic><topic>dispersal behaviour</topic><topic>Ecological effects</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Environmental restoration</topic><topic>Genetic analysis</topic><topic>Genetic structure</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>habitat fragmentation</topic><topic>landscape connectivity</topic><topic>landscape genetics</topic><topic>Landscape preservation</topic><topic>landscapes</topic><topic>Microsatellite Repeats - genetics</topic><topic>Movement ecology</topic><topic>Oncorhynchus - genetics</topic><topic>Oncorhynchus clarkii</topic><topic>Pattern analysis</topic><topic>Population</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Rivers</topic><topic>riverscape genetics</topic><topic>Salmon</topic><topic>Sampling</topic><topic>streams</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, Casey C.</creatorcontrib><creatorcontrib>Alò, Dominique</creatorcontrib><creatorcontrib>Simmons, Ryan K.</creatorcontrib><creatorcontrib>Cotey, Stacy R.</creatorcontrib><creatorcontrib>Zarn, Katherine E.</creatorcontrib><creatorcontrib>Gazeley, Ian F.</creatorcontrib><creatorcontrib>Small, Maureen</creatorcontrib><creatorcontrib>Fortin, Marie‐Josee</creatorcontrib><creatorcontrib>Bearlin, Andrew R.</creatorcontrib><creatorcontrib>Smith, Seth R.</creatorcontrib><creatorcontrib>Landguth, Erin L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, Casey C.</au><au>Alò, Dominique</au><au>Simmons, Ryan K.</au><au>Cotey, Stacy R.</au><au>Zarn, Katherine E.</au><au>Gazeley, Ian F.</au><au>Small, Maureen</au><au>Fortin, Marie‐Josee</au><au>Bearlin, Andrew R.</au><au>Smith, Seth R.</au><au>Landguth, Erin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>18</issue><spage>e17500</spage><epage>n/a</epage><pages>e17500-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39188095</pmid><doi>10.1111/mec.17500</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7044-346X</orcidid><orcidid>https://orcid.org/0000-0001-6096-3448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2024-09, Vol.33 (18), p.e17500-n/a
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_proquest_miscellaneous_3153822124
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal Distribution
Animals
Anthropogenic Effects
Anthropogenic factors
Aquatic animals
Aquatic environment
CDMetaPOP
Cluster analysis
Computer Simulation
computer simulations
data collection
Dispersal
dispersal behavior
dispersal behaviour
Ecological effects
Ecosystem
Environment
Environmental restoration
Genetic analysis
Genetic structure
Genetics
Genetics, Population
habitat fragmentation
landscape connectivity
landscape genetics
Landscape preservation
landscapes
Microsatellite Repeats - genetics
Movement ecology
Oncorhynchus - genetics
Oncorhynchus clarkii
Pattern analysis
Population
Population genetics
Population structure
Rivers
riverscape genetics
Salmon
Sampling
streams
Structure-function relationships
title Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20effects%20of%20dispersal,%20environment%20and%20anthropogenic%20barriers%20on%20functional%20connectivity%20in%20aquatic%20systems&rft.jtitle=Molecular%20ecology&rft.au=Day,%20Casey%20C.&rft.date=2024-09&rft.volume=33&rft.issue=18&rft.spage=e17500&rft.epage=n/a&rft.pages=e17500-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17500&rft_dat=%3Cproquest_cross%3E3153822124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119625664&rft_id=info:pmid/39188095&rfr_iscdi=true