Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems
Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2024-09, Vol.33 (18), p.e17500-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e17500 |
container_title | Molecular ecology |
container_volume | 33 |
creator | Day, Casey C. Alò, Dominique Simmons, Ryan K. Cotey, Stacy R. Zarn, Katherine E. Gazeley, Ian F. Small, Maureen Fortin, Marie‐Josee Bearlin, Andrew R. Smith, Seth R. Landguth, Erin L. |
description | Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity. |
doi_str_mv | 10.1111/mec.17500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153822124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153822124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</originalsourceid><addsrcrecordid>eNqF0U9rFDEcxvEgit1WD74BCXix4LT5P5OjrK0KFS8K3oYk88uaMpNsk5nqvvtm3dpDQRwIc_nwheRB6BUlZ7R-5xO4M9pKQp6gFeVKNkyLH0_RimjFGko6foSOS7kmhHIm5XN0xDXtOqLlCv3-EArE2cTNGOIGg_fg5oKTx0MoW8jFjO8wxNuQU5wqxCYO9cw_c9qmDcTgsDU5hypxitgv0c0hRTNil2KsrXAb5h0OEZubxcyVl12ZYSov0DNvxgIv7_8n6Pvlxbf1p-bq68fP6_dXjeNCkYa3HXRKCGvUYBk1nfdWmM4aJ1slmAeuNQUmvaVGWyOkk5YIweSgQJhB8xP09tDd5nSzQJn7KRQH42gipKX0nEreMUaZ-D8luhWa83ZfffOIXqcl12vvg7Q-u1RqHzw9KJdTKRl8v81hMnnXU9Lvl-vrcv2f5ap9fV9c7ATDg_w7VQXnB_ArjLD7d6n_crE-JO8AYCOkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119625664</pqid></control><display><type>article</type><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</creator><creatorcontrib>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</creatorcontrib><description>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17500</identifier><identifier>PMID: 39188095</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal Distribution ; Animals ; Anthropogenic Effects ; Anthropogenic factors ; Aquatic animals ; Aquatic environment ; CDMetaPOP ; Cluster analysis ; Computer Simulation ; computer simulations ; data collection ; Dispersal ; dispersal behavior ; dispersal behaviour ; Ecological effects ; Ecosystem ; Environment ; Environmental restoration ; Genetic analysis ; Genetic structure ; Genetics ; Genetics, Population ; habitat fragmentation ; landscape connectivity ; landscape genetics ; Landscape preservation ; landscapes ; Microsatellite Repeats - genetics ; Movement ecology ; Oncorhynchus - genetics ; Oncorhynchus clarkii ; Pattern analysis ; Population ; Population genetics ; Population structure ; Rivers ; riverscape genetics ; Salmon ; Sampling ; streams ; Structure-function relationships</subject><ispartof>Molecular ecology, 2024-09, Vol.33 (18), p.e17500-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</cites><orcidid>0000-0002-7044-346X ; 0000-0001-6096-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.17500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.17500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39188095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, Casey C.</creatorcontrib><creatorcontrib>Alò, Dominique</creatorcontrib><creatorcontrib>Simmons, Ryan K.</creatorcontrib><creatorcontrib>Cotey, Stacy R.</creatorcontrib><creatorcontrib>Zarn, Katherine E.</creatorcontrib><creatorcontrib>Gazeley, Ian F.</creatorcontrib><creatorcontrib>Small, Maureen</creatorcontrib><creatorcontrib>Fortin, Marie‐Josee</creatorcontrib><creatorcontrib>Bearlin, Andrew R.</creatorcontrib><creatorcontrib>Smith, Seth R.</creatorcontrib><creatorcontrib>Landguth, Erin L.</creatorcontrib><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</description><subject>Animal Distribution</subject><subject>Animals</subject><subject>Anthropogenic Effects</subject><subject>Anthropogenic factors</subject><subject>Aquatic animals</subject><subject>Aquatic environment</subject><subject>CDMetaPOP</subject><subject>Cluster analysis</subject><subject>Computer Simulation</subject><subject>computer simulations</subject><subject>data collection</subject><subject>Dispersal</subject><subject>dispersal behavior</subject><subject>dispersal behaviour</subject><subject>Ecological effects</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Environmental restoration</subject><subject>Genetic analysis</subject><subject>Genetic structure</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>habitat fragmentation</subject><subject>landscape connectivity</subject><subject>landscape genetics</subject><subject>Landscape preservation</subject><subject>landscapes</subject><subject>Microsatellite Repeats - genetics</subject><subject>Movement ecology</subject><subject>Oncorhynchus - genetics</subject><subject>Oncorhynchus clarkii</subject><subject>Pattern analysis</subject><subject>Population</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Rivers</subject><subject>riverscape genetics</subject><subject>Salmon</subject><subject>Sampling</subject><subject>streams</subject><subject>Structure-function relationships</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9rFDEcxvEgit1WD74BCXix4LT5P5OjrK0KFS8K3oYk88uaMpNsk5nqvvtm3dpDQRwIc_nwheRB6BUlZ7R-5xO4M9pKQp6gFeVKNkyLH0_RimjFGko6foSOS7kmhHIm5XN0xDXtOqLlCv3-EArE2cTNGOIGg_fg5oKTx0MoW8jFjO8wxNuQU5wqxCYO9cw_c9qmDcTgsDU5hypxitgv0c0hRTNil2KsrXAb5h0OEZubxcyVl12ZYSov0DNvxgIv7_8n6Pvlxbf1p-bq68fP6_dXjeNCkYa3HXRKCGvUYBk1nfdWmM4aJ1slmAeuNQUmvaVGWyOkk5YIweSgQJhB8xP09tDd5nSzQJn7KRQH42gipKX0nEreMUaZ-D8luhWa83ZfffOIXqcl12vvg7Q-u1RqHzw9KJdTKRl8v81hMnnXU9Lvl-vrcv2f5ap9fV9c7ATDg_w7VQXnB_ArjLD7d6n_crE-JO8AYCOkRQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Day, Casey C.</creator><creator>Alò, Dominique</creator><creator>Simmons, Ryan K.</creator><creator>Cotey, Stacy R.</creator><creator>Zarn, Katherine E.</creator><creator>Gazeley, Ian F.</creator><creator>Small, Maureen</creator><creator>Fortin, Marie‐Josee</creator><creator>Bearlin, Andrew R.</creator><creator>Smith, Seth R.</creator><creator>Landguth, Erin L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7044-346X</orcidid><orcidid>https://orcid.org/0000-0001-6096-3448</orcidid></search><sort><creationdate>202409</creationdate><title>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</title><author>Day, Casey C. ; Alò, Dominique ; Simmons, Ryan K. ; Cotey, Stacy R. ; Zarn, Katherine E. ; Gazeley, Ian F. ; Small, Maureen ; Fortin, Marie‐Josee ; Bearlin, Andrew R. ; Smith, Seth R. ; Landguth, Erin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-378e8644ba6db21a8ffb4a8bac57642fe3991e25fb1a9ba45c5b04425d6e4ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal Distribution</topic><topic>Animals</topic><topic>Anthropogenic Effects</topic><topic>Anthropogenic factors</topic><topic>Aquatic animals</topic><topic>Aquatic environment</topic><topic>CDMetaPOP</topic><topic>Cluster analysis</topic><topic>Computer Simulation</topic><topic>computer simulations</topic><topic>data collection</topic><topic>Dispersal</topic><topic>dispersal behavior</topic><topic>dispersal behaviour</topic><topic>Ecological effects</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Environmental restoration</topic><topic>Genetic analysis</topic><topic>Genetic structure</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>habitat fragmentation</topic><topic>landscape connectivity</topic><topic>landscape genetics</topic><topic>Landscape preservation</topic><topic>landscapes</topic><topic>Microsatellite Repeats - genetics</topic><topic>Movement ecology</topic><topic>Oncorhynchus - genetics</topic><topic>Oncorhynchus clarkii</topic><topic>Pattern analysis</topic><topic>Population</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Rivers</topic><topic>riverscape genetics</topic><topic>Salmon</topic><topic>Sampling</topic><topic>streams</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, Casey C.</creatorcontrib><creatorcontrib>Alò, Dominique</creatorcontrib><creatorcontrib>Simmons, Ryan K.</creatorcontrib><creatorcontrib>Cotey, Stacy R.</creatorcontrib><creatorcontrib>Zarn, Katherine E.</creatorcontrib><creatorcontrib>Gazeley, Ian F.</creatorcontrib><creatorcontrib>Small, Maureen</creatorcontrib><creatorcontrib>Fortin, Marie‐Josee</creatorcontrib><creatorcontrib>Bearlin, Andrew R.</creatorcontrib><creatorcontrib>Smith, Seth R.</creatorcontrib><creatorcontrib>Landguth, Erin L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, Casey C.</au><au>Alò, Dominique</au><au>Simmons, Ryan K.</au><au>Cotey, Stacy R.</au><au>Zarn, Katherine E.</au><au>Gazeley, Ian F.</au><au>Small, Maureen</au><au>Fortin, Marie‐Josee</au><au>Bearlin, Andrew R.</au><au>Smith, Seth R.</au><au>Landguth, Erin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>18</issue><spage>e17500</spage><epage>n/a</epage><pages>e17500-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39188095</pmid><doi>10.1111/mec.17500</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7044-346X</orcidid><orcidid>https://orcid.org/0000-0001-6096-3448</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2024-09, Vol.33 (18), p.e17500-n/a |
issn | 0962-1083 1365-294X 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153822124 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal Distribution Animals Anthropogenic Effects Anthropogenic factors Aquatic animals Aquatic environment CDMetaPOP Cluster analysis Computer Simulation computer simulations data collection Dispersal dispersal behavior dispersal behaviour Ecological effects Ecosystem Environment Environmental restoration Genetic analysis Genetic structure Genetics Genetics, Population habitat fragmentation landscape connectivity landscape genetics Landscape preservation landscapes Microsatellite Repeats - genetics Movement ecology Oncorhynchus - genetics Oncorhynchus clarkii Pattern analysis Population Population genetics Population structure Rivers riverscape genetics Salmon Sampling streams Structure-function relationships |
title | Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20effects%20of%20dispersal,%20environment%20and%20anthropogenic%20barriers%20on%20functional%20connectivity%20in%20aquatic%20systems&rft.jtitle=Molecular%20ecology&rft.au=Day,%20Casey%20C.&rft.date=2024-09&rft.volume=33&rft.issue=18&rft.spage=e17500&rft.epage=n/a&rft.pages=e17500-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17500&rft_dat=%3Cproquest_cross%3E3153822124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119625664&rft_id=info:pmid/39188095&rfr_iscdi=true |