Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris
The common clownfish, Amphiprion ocellaris , is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change). Recently, CRISPR/Cas9 methods were developed for knoc...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2024-10, Vol.26 (5), p.1067-1078 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 5 |
container_start_page | 1067 |
container_title | Marine biotechnology (New York, N.Y.) |
container_volume | 26 |
creator | Graham, Gabriel J. Ibanez, Emma M. Mitchell, Laurie J. Weis, Karen E. Raetzman, Lori T. Cortesi, Fabio Rhodes, Justin S. |
description | The common clownfish,
Amphiprion ocellaris
, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change). Recently, CRISPR/Cas9 methods were developed for knocking out specific genes for mechanistic studies. Here, we expand the genetic toolkit for
A. ocellaris
by creating the first transgenic line using the
Tol2
transposon system. Fertilized eggs were co-injected with
Tol2
transposase mRNA and a plasmid encoding an elongation factor-1α (
Ef1α
): green fluorescent protein (
GFP
) cassette at various concentrations, needle tip dimensions, and timepoints post-fertilization. We compared various injection parameters and sterilization methods to maximize the survival of injected eggs. F0s (
n
= 10) that were genotyped GFP + were then raised to 6 months of age and crossed with wild-type (WT) females to confirm germline transmission. F1 offspring were also raised and crossed in the same manner. The highly efficient
Tol2
transposon system resulted in a 37% rate of transgenesis for surviving eggs amounting to a 2.7% yield of all injected eggs surviving and being GFP + (
n
= 160). Of these, 10 were raised to adulthood, 8 spawned, and 5/8 (62.5%) produced GFP + offspring. Further, two F1s crossed with WT females produced 54.2% and 44.6% GFP + offspring respectively, confirming the creation of a stable line. This is, to our knowledge, the first generation of a transgenic line in any coral reef fish. The ability to express transgenes of interest in the iconic anemonefish opens the door to a new era of exploration into their fascinating biology. |
doi_str_mv | 10.1007/s10126-024-10357-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153819113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116754454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-294694cd708b46362436644f698a037a9f6d8f4a82b83e09dc4219ddda99422a3</originalsourceid><addsrcrecordid>eNqFkcFPwjAUxhujEUT_AQ9miRcv076269ojIYIkJCYGL16asnUwMjpst4P_vYUBJh701Kbv933v9X0I3QJ-BIzTJw8YCI8xYTFgmqQxnKE-MMpjQig_P92J6KEr79c4iFKKL1GPSkgE50kffUyMNU43ZW2juoialYnGpfNNNHfa-qWxZRbNSmuOxWlW755GtdNV9GZMEXC_ioab7arcur1LZqpKu9Jfo4tCV97cHM4Beh8_z0cv8ex1Mh0NZ3FGhGxiIhmXLMtTLBaMU07C0JyxgkuhMU21LHguCqYFWQhqsMwzRkDmea6lZIRoOkAPne_W1Z-t8Y3alH4_hDV16xWFhAqQAPR_FEvGUsLDOgfo_he6rltnw0eCIfA0YSxhgSIdlbnae2cKFZaw0e5LAVa7kFQXkgohqX1ICoLo7mDdLjYmP0mOqQSAdoAPJbs07qf3H7bfVq6ZnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116754454</pqid></control><display><type>article</type><title>Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Graham, Gabriel J. ; Ibanez, Emma M. ; Mitchell, Laurie J. ; Weis, Karen E. ; Raetzman, Lori T. ; Cortesi, Fabio ; Rhodes, Justin S.</creator><creatorcontrib>Graham, Gabriel J. ; Ibanez, Emma M. ; Mitchell, Laurie J. ; Weis, Karen E. ; Raetzman, Lori T. ; Cortesi, Fabio ; Rhodes, Justin S.</creatorcontrib><description>The common clownfish,
Amphiprion ocellaris
, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change). Recently, CRISPR/Cas9 methods were developed for knocking out specific genes for mechanistic studies. Here, we expand the genetic toolkit for
A. ocellaris
by creating the first transgenic line using the
Tol2
transposon system. Fertilized eggs were co-injected with
Tol2
transposase mRNA and a plasmid encoding an elongation factor-1α (
Ef1α
): green fluorescent protein (
GFP
) cassette at various concentrations, needle tip dimensions, and timepoints post-fertilization. We compared various injection parameters and sterilization methods to maximize the survival of injected eggs. F0s (
n
= 10) that were genotyped GFP + were then raised to 6 months of age and crossed with wild-type (WT) females to confirm germline transmission. F1 offspring were also raised and crossed in the same manner. The highly efficient
Tol2
transposon system resulted in a 37% rate of transgenesis for surviving eggs amounting to a 2.7% yield of all injected eggs surviving and being GFP + (
n
= 160). Of these, 10 were raised to adulthood, 8 spawned, and 5/8 (62.5%) produced GFP + offspring. Further, two F1s crossed with WT females produced 54.2% and 44.6% GFP + offspring respectively, confirming the creation of a stable line. This is, to our knowledge, the first generation of a transgenic line in any coral reef fish. The ability to express transgenes of interest in the iconic anemonefish opens the door to a new era of exploration into their fascinating biology.</description><identifier>ISSN: 1436-2228</identifier><identifier>ISSN: 1436-2236</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-024-10357-1</identifier><identifier>PMID: 39158665</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>adulthood ; Amphiprion ocellaris ; Animals ; Animals, Genetically Modified - genetics ; Aquaria ; Aquarium fishes ; Aquariums ; Biological activity ; Biological fertilization ; Biomedical and Life Sciences ; Coral Reefs ; CRISPR ; CRISPR-Cas systems ; DNA Transposable Elements - genetics ; Eggs ; Engineering ; Female ; Females ; Fertilization ; Fish ; Fish eggs ; Fishes - genetics ; Fluorescence ; Freshwater & Marine Ecology ; Gene transfer ; Gene Transfer Techniques ; Genetic crosses ; genetically modified organisms ; genotyping ; germ cells ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Life Sciences ; Male ; Marine biology ; Marine fishes ; Marine invertebrates ; Microbiology ; mRNA ; Offspring ; Peptide Elongation Factor 1 - genetics ; Perciformes - genetics ; plasmids ; progeny ; Protandry ; Reef fish ; Reef fishes ; Reproduction ; Sex reversal ; Sterilization ; Survival ; Symbiosis ; Transgenes ; transgenesis ; Transgenic fish ; Transposase ; transposases ; Transposases - genetics ; Transposases - metabolism ; Transposons ; vision ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1067-1078</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-294694cd708b46362436644f698a037a9f6d8f4a82b83e09dc4219ddda99422a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-024-10357-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-024-10357-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, Gabriel J.</creatorcontrib><creatorcontrib>Ibanez, Emma M.</creatorcontrib><creatorcontrib>Mitchell, Laurie J.</creatorcontrib><creatorcontrib>Weis, Karen E.</creatorcontrib><creatorcontrib>Raetzman, Lori T.</creatorcontrib><creatorcontrib>Cortesi, Fabio</creatorcontrib><creatorcontrib>Rhodes, Justin S.</creatorcontrib><title>Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>The common clownfish,
Amphiprion ocellaris
, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change). Recently, CRISPR/Cas9 methods were developed for knocking out specific genes for mechanistic studies. Here, we expand the genetic toolkit for
A. ocellaris
by creating the first transgenic line using the
Tol2
transposon system. Fertilized eggs were co-injected with
Tol2
transposase mRNA and a plasmid encoding an elongation factor-1α (
Ef1α
): green fluorescent protein (
GFP
) cassette at various concentrations, needle tip dimensions, and timepoints post-fertilization. We compared various injection parameters and sterilization methods to maximize the survival of injected eggs. F0s (
n
= 10) that were genotyped GFP + were then raised to 6 months of age and crossed with wild-type (WT) females to confirm germline transmission. F1 offspring were also raised and crossed in the same manner. The highly efficient
Tol2
transposon system resulted in a 37% rate of transgenesis for surviving eggs amounting to a 2.7% yield of all injected eggs surviving and being GFP + (
n
= 160). Of these, 10 were raised to adulthood, 8 spawned, and 5/8 (62.5%) produced GFP + offspring. Further, two F1s crossed with WT females produced 54.2% and 44.6% GFP + offspring respectively, confirming the creation of a stable line. This is, to our knowledge, the first generation of a transgenic line in any coral reef fish. The ability to express transgenes of interest in the iconic anemonefish opens the door to a new era of exploration into their fascinating biology.</description><subject>adulthood</subject><subject>Amphiprion ocellaris</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Aquaria</subject><subject>Aquarium fishes</subject><subject>Aquariums</subject><subject>Biological activity</subject><subject>Biological fertilization</subject><subject>Biomedical and Life Sciences</subject><subject>Coral Reefs</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>DNA Transposable Elements - genetics</subject><subject>Eggs</subject><subject>Engineering</subject><subject>Female</subject><subject>Females</subject><subject>Fertilization</subject><subject>Fish</subject><subject>Fish eggs</subject><subject>Fishes - genetics</subject><subject>Fluorescence</subject><subject>Freshwater & Marine Ecology</subject><subject>Gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic crosses</subject><subject>genetically modified organisms</subject><subject>genotyping</subject><subject>germ cells</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Marine biology</subject><subject>Marine fishes</subject><subject>Marine invertebrates</subject><subject>Microbiology</subject><subject>mRNA</subject><subject>Offspring</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Perciformes - genetics</subject><subject>plasmids</subject><subject>progeny</subject><subject>Protandry</subject><subject>Reef fish</subject><subject>Reef fishes</subject><subject>Reproduction</subject><subject>Sex reversal</subject><subject>Sterilization</subject><subject>Survival</subject><subject>Symbiosis</subject><subject>Transgenes</subject><subject>transgenesis</subject><subject>Transgenic fish</subject><subject>Transposase</subject><subject>transposases</subject><subject>Transposases - genetics</subject><subject>Transposases - metabolism</subject><subject>Transposons</subject><subject>vision</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFPwjAUxhujEUT_AQ9miRcv076269ojIYIkJCYGL16asnUwMjpst4P_vYUBJh701Kbv933v9X0I3QJ-BIzTJw8YCI8xYTFgmqQxnKE-MMpjQig_P92J6KEr79c4iFKKL1GPSkgE50kffUyMNU43ZW2juoialYnGpfNNNHfa-qWxZRbNSmuOxWlW755GtdNV9GZMEXC_ioab7arcur1LZqpKu9Jfo4tCV97cHM4Beh8_z0cv8ex1Mh0NZ3FGhGxiIhmXLMtTLBaMU07C0JyxgkuhMU21LHguCqYFWQhqsMwzRkDmea6lZIRoOkAPne_W1Z-t8Y3alH4_hDV16xWFhAqQAPR_FEvGUsLDOgfo_he6rltnw0eCIfA0YSxhgSIdlbnae2cKFZaw0e5LAVa7kFQXkgohqX1ICoLo7mDdLjYmP0mOqQSAdoAPJbs07qf3H7bfVq6ZnA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Graham, Gabriel J.</creator><creator>Ibanez, Emma M.</creator><creator>Mitchell, Laurie J.</creator><creator>Weis, Karen E.</creator><creator>Raetzman, Lori T.</creator><creator>Cortesi, Fabio</creator><creator>Rhodes, Justin S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241001</creationdate><title>Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris</title><author>Graham, Gabriel J. ; Ibanez, Emma M. ; Mitchell, Laurie J. ; Weis, Karen E. ; Raetzman, Lori T. ; Cortesi, Fabio ; Rhodes, Justin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-294694cd708b46362436644f698a037a9f6d8f4a82b83e09dc4219ddda99422a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adulthood</topic><topic>Amphiprion ocellaris</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Aquaria</topic><topic>Aquarium fishes</topic><topic>Aquariums</topic><topic>Biological activity</topic><topic>Biological fertilization</topic><topic>Biomedical and Life Sciences</topic><topic>Coral Reefs</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>DNA Transposable Elements - genetics</topic><topic>Eggs</topic><topic>Engineering</topic><topic>Female</topic><topic>Females</topic><topic>Fertilization</topic><topic>Fish</topic><topic>Fish eggs</topic><topic>Fishes - genetics</topic><topic>Fluorescence</topic><topic>Freshwater & Marine Ecology</topic><topic>Gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic crosses</topic><topic>genetically modified organisms</topic><topic>genotyping</topic><topic>germ cells</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Marine biology</topic><topic>Marine fishes</topic><topic>Marine invertebrates</topic><topic>Microbiology</topic><topic>mRNA</topic><topic>Offspring</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Perciformes - genetics</topic><topic>plasmids</topic><topic>progeny</topic><topic>Protandry</topic><topic>Reef fish</topic><topic>Reef fishes</topic><topic>Reproduction</topic><topic>Sex reversal</topic><topic>Sterilization</topic><topic>Survival</topic><topic>Symbiosis</topic><topic>Transgenes</topic><topic>transgenesis</topic><topic>Transgenic fish</topic><topic>Transposase</topic><topic>transposases</topic><topic>Transposases - genetics</topic><topic>Transposases - metabolism</topic><topic>Transposons</topic><topic>vision</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Gabriel J.</creatorcontrib><creatorcontrib>Ibanez, Emma M.</creatorcontrib><creatorcontrib>Mitchell, Laurie J.</creatorcontrib><creatorcontrib>Weis, Karen E.</creatorcontrib><creatorcontrib>Raetzman, Lori T.</creatorcontrib><creatorcontrib>Cortesi, Fabio</creatorcontrib><creatorcontrib>Rhodes, Justin S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Gabriel J.</au><au>Ibanez, Emma M.</au><au>Mitchell, Laurie J.</au><au>Weis, Karen E.</au><au>Raetzman, Lori T.</au><au>Cortesi, Fabio</au><au>Rhodes, Justin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>1067</spage><epage>1078</epage><pages>1067-1078</pages><issn>1436-2228</issn><issn>1436-2236</issn><eissn>1436-2236</eissn><abstract>The common clownfish,
Amphiprion ocellaris
, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change). Recently, CRISPR/Cas9 methods were developed for knocking out specific genes for mechanistic studies. Here, we expand the genetic toolkit for
A. ocellaris
by creating the first transgenic line using the
Tol2
transposon system. Fertilized eggs were co-injected with
Tol2
transposase mRNA and a plasmid encoding an elongation factor-1α (
Ef1α
): green fluorescent protein (
GFP
) cassette at various concentrations, needle tip dimensions, and timepoints post-fertilization. We compared various injection parameters and sterilization methods to maximize the survival of injected eggs. F0s (
n
= 10) that were genotyped GFP + were then raised to 6 months of age and crossed with wild-type (WT) females to confirm germline transmission. F1 offspring were also raised and crossed in the same manner. The highly efficient
Tol2
transposon system resulted in a 37% rate of transgenesis for surviving eggs amounting to a 2.7% yield of all injected eggs surviving and being GFP + (
n
= 160). Of these, 10 were raised to adulthood, 8 spawned, and 5/8 (62.5%) produced GFP + offspring. Further, two F1s crossed with WT females produced 54.2% and 44.6% GFP + offspring respectively, confirming the creation of a stable line. This is, to our knowledge, the first generation of a transgenic line in any coral reef fish. The ability to express transgenes of interest in the iconic anemonefish opens the door to a new era of exploration into their fascinating biology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39158665</pmid><doi>10.1007/s10126-024-10357-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-2228 |
ispartof | Marine biotechnology (New York, N.Y.), 2024-10, Vol.26 (5), p.1067-1078 |
issn | 1436-2228 1436-2236 1436-2236 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153819113 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | adulthood Amphiprion ocellaris Animals Animals, Genetically Modified - genetics Aquaria Aquarium fishes Aquariums Biological activity Biological fertilization Biomedical and Life Sciences Coral Reefs CRISPR CRISPR-Cas systems DNA Transposable Elements - genetics Eggs Engineering Female Females Fertilization Fish Fish eggs Fishes - genetics Fluorescence Freshwater & Marine Ecology Gene transfer Gene Transfer Techniques Genetic crosses genetically modified organisms genotyping germ cells Green fluorescent protein Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Life Sciences Male Marine biology Marine fishes Marine invertebrates Microbiology mRNA Offspring Peptide Elongation Factor 1 - genetics Perciformes - genetics plasmids progeny Protandry Reef fish Reef fishes Reproduction Sex reversal Sterilization Survival Symbiosis Transgenes transgenesis Transgenic fish Transposase transposases Transposases - genetics Transposases - metabolism Transposons vision Zoology |
title | Generation of the First Transgenic Line of the Iconic Coral Reef Fish Amphiprion ocellaris |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20the%20First%20Transgenic%20Line%20of%20the%20Iconic%20Coral%20Reef%20Fish%20Amphiprion%20ocellaris&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Graham,%20Gabriel%20J.&rft.date=2024-10-01&rft.volume=26&rft.issue=5&rft.spage=1067&rft.epage=1078&rft.pages=1067-1078&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-024-10357-1&rft_dat=%3Cproquest_cross%3E3116754454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116754454&rft_id=info:pmid/39158665&rfr_iscdi=true |