Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori
Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an init...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2023-12, Vol.265, p.124836, Article 124836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124836 |
container_title | Talanta (Oxford) |
container_volume | 265 |
creator | Zandi, Farzad Mansouri, Parvaneh Goodarzi, Mohammad |
description | Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.
[Display omitted]
•We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction. |
doi_str_mv | 10.1016/j.talanta.2023.124836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153815880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914023005878</els_id><sourcerecordid>3153815880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</originalsourceid><addsrcrecordid>eNqFkUFv2zAMhYVhxZqm_QkbdNzFKWVatnQahmJrCxTopT0Lskwjyhwrk5QO-fdVkazXnggQHx_J9xj7KmAlQLTXm1W2k52zXdVQ40rUjcL2E1sI1WGFssPPbAGAutKigXN2kdIGoJCAX9g5dqixA71gdDuF3k58F0MmP1enyv2cKVqXfZj5TPlfiH9SafID2ZR5ss6tbQzbg6PEHUV68clb4nYe-Jom74qoKwp8d5hC9JfsbLRToqtTXbLn37-ebu6qh8fb-5ufD5XDps1V17UN2naQom3l2NtyrYaGxqEHp3Tt1Kictgr6ehQCpRy17UWrRwVK1g1KXLLvR93yxt89pWy2PjmailEU9smgkKiEVAo-RGuFtWpAdV1B5RF1MaQUaTS76Lc2HowA8xaG2ZhTGOYtDHMMo8x9O63Y91sa3qf-u1-AH0eAiicvnqJJztPsaPCRXDZD8B-seAVUHZ5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832840877</pqid></control><display><type>article</type><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</creator><creatorcontrib>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</creatorcontrib><description>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.
[Display omitted]
•We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</description><identifier>ISSN: 0039-9140</identifier><identifier>ISSN: 1873-3573</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2023.124836</identifier><identifier>PMID: 37393709</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; amino acid composition ; autocorrelation ; Chiroptera ; Computational Biology - methods ; Ensemble learning ; Features extraction ; Features selection ; Helicobacter pylori ; Helicobacter pylori - chemistry ; Helicobacter pylori - metabolism ; Machine learning ; Predicting protein-protein interactions ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; protein-protein interactions ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Support Vector Machine ; Swarm intelligence ; yeasts</subject><ispartof>Talanta (Oxford), 2023-12, Vol.265, p.124836, Article 124836</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</cites><orcidid>0000-0002-1908-3489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039914023005878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37393709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zandi, Farzad</creatorcontrib><creatorcontrib>Mansouri, Parvaneh</creatorcontrib><creatorcontrib>Goodarzi, Mohammad</creatorcontrib><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.
[Display omitted]
•We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</description><subject>Algorithms</subject><subject>amino acid composition</subject><subject>autocorrelation</subject><subject>Chiroptera</subject><subject>Computational Biology - methods</subject><subject>Ensemble learning</subject><subject>Features extraction</subject><subject>Features selection</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - chemistry</subject><subject>Helicobacter pylori - metabolism</subject><subject>Machine learning</subject><subject>Predicting protein-protein interactions</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>protein-protein interactions</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Support Vector Machine</subject><subject>Swarm intelligence</subject><subject>yeasts</subject><issn>0039-9140</issn><issn>1873-3573</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv2zAMhYVhxZqm_QkbdNzFKWVatnQahmJrCxTopT0Lskwjyhwrk5QO-fdVkazXnggQHx_J9xj7KmAlQLTXm1W2k52zXdVQ40rUjcL2E1sI1WGFssPPbAGAutKigXN2kdIGoJCAX9g5dqixA71gdDuF3k58F0MmP1enyv2cKVqXfZj5TPlfiH9SafID2ZR5ss6tbQzbg6PEHUV68clb4nYe-Jom74qoKwp8d5hC9JfsbLRToqtTXbLn37-ebu6qh8fb-5ufD5XDps1V17UN2naQom3l2NtyrYaGxqEHp3Tt1Kictgr6ehQCpRy17UWrRwVK1g1KXLLvR93yxt89pWy2PjmailEU9smgkKiEVAo-RGuFtWpAdV1B5RF1MaQUaTS76Lc2HowA8xaG2ZhTGOYtDHMMo8x9O63Y91sa3qf-u1-AH0eAiicvnqJJztPsaPCRXDZD8B-seAVUHZ5y</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zandi, Farzad</creator><creator>Mansouri, Parvaneh</creator><creator>Goodarzi, Mohammad</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1908-3489</orcidid></search><sort><creationdate>20231201</creationdate><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><author>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>amino acid composition</topic><topic>autocorrelation</topic><topic>Chiroptera</topic><topic>Computational Biology - methods</topic><topic>Ensemble learning</topic><topic>Features extraction</topic><topic>Features selection</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - chemistry</topic><topic>Helicobacter pylori - metabolism</topic><topic>Machine learning</topic><topic>Predicting protein-protein interactions</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>protein-protein interactions</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Support Vector Machine</topic><topic>Swarm intelligence</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zandi, Farzad</creatorcontrib><creatorcontrib>Mansouri, Parvaneh</creatorcontrib><creatorcontrib>Goodarzi, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandi, Farzad</au><au>Mansouri, Parvaneh</au><au>Goodarzi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>265</volume><spage>124836</spage><pages>124836-</pages><artnum>124836</artnum><issn>0039-9140</issn><issn>1873-3573</issn><eissn>1873-3573</eissn><abstract>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.
[Display omitted]
•We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37393709</pmid><doi>10.1016/j.talanta.2023.124836</doi><orcidid>https://orcid.org/0000-0002-1908-3489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-9140 |
ispartof | Talanta (Oxford), 2023-12, Vol.265, p.124836, Article 124836 |
issn | 0039-9140 1873-3573 1873-3573 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153815880 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms amino acid composition autocorrelation Chiroptera Computational Biology - methods Ensemble learning Features extraction Features selection Helicobacter pylori Helicobacter pylori - chemistry Helicobacter pylori - metabolism Machine learning Predicting protein-protein interactions Protein Interaction Mapping - methods Protein Interaction Maps protein-protein interactions Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Support Vector Machine Swarm intelligence yeasts |
title | Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20protein-protein%20interaction%20networks%20in%20yeast%20saccharomyces%20cerevisiae%20and%20helicobacter%20pylori&rft.jtitle=Talanta%20(Oxford)&rft.au=Zandi,%20Farzad&rft.date=2023-12-01&rft.volume=265&rft.spage=124836&rft.pages=124836-&rft.artnum=124836&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2023.124836&rft_dat=%3Cproquest_cross%3E3153815880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832840877&rft_id=info:pmid/37393709&rft_els_id=S0039914023005878&rfr_iscdi=true |