Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori

Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an init...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2023-12, Vol.265, p.124836, Article 124836
Hauptverfasser: Zandi, Farzad, Mansouri, Parvaneh, Goodarzi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124836
container_title Talanta (Oxford)
container_volume 265
creator Zandi, Farzad
Mansouri, Parvaneh
Goodarzi, Mohammad
description Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community. [Display omitted] •We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.
doi_str_mv 10.1016/j.talanta.2023.124836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153815880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914023005878</els_id><sourcerecordid>3153815880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</originalsourceid><addsrcrecordid>eNqFkUFv2zAMhYVhxZqm_QkbdNzFKWVatnQahmJrCxTopT0Lskwjyhwrk5QO-fdVkazXnggQHx_J9xj7KmAlQLTXm1W2k52zXdVQ40rUjcL2E1sI1WGFssPPbAGAutKigXN2kdIGoJCAX9g5dqixA71gdDuF3k58F0MmP1enyv2cKVqXfZj5TPlfiH9SafID2ZR5ss6tbQzbg6PEHUV68clb4nYe-Jom74qoKwp8d5hC9JfsbLRToqtTXbLn37-ebu6qh8fb-5ufD5XDps1V17UN2naQom3l2NtyrYaGxqEHp3Tt1Kictgr6ehQCpRy17UWrRwVK1g1KXLLvR93yxt89pWy2PjmailEU9smgkKiEVAo-RGuFtWpAdV1B5RF1MaQUaTS76Lc2HowA8xaG2ZhTGOYtDHMMo8x9O63Y91sa3qf-u1-AH0eAiicvnqJJztPsaPCRXDZD8B-seAVUHZ5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832840877</pqid></control><display><type>article</type><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</creator><creatorcontrib>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</creatorcontrib><description>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community. [Display omitted] •We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</description><identifier>ISSN: 0039-9140</identifier><identifier>ISSN: 1873-3573</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2023.124836</identifier><identifier>PMID: 37393709</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; amino acid composition ; autocorrelation ; Chiroptera ; Computational Biology - methods ; Ensemble learning ; Features extraction ; Features selection ; Helicobacter pylori ; Helicobacter pylori - chemistry ; Helicobacter pylori - metabolism ; Machine learning ; Predicting protein-protein interactions ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; protein-protein interactions ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Support Vector Machine ; Swarm intelligence ; yeasts</subject><ispartof>Talanta (Oxford), 2023-12, Vol.265, p.124836, Article 124836</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</cites><orcidid>0000-0002-1908-3489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039914023005878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37393709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zandi, Farzad</creatorcontrib><creatorcontrib>Mansouri, Parvaneh</creatorcontrib><creatorcontrib>Goodarzi, Mohammad</creatorcontrib><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community. [Display omitted] •We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</description><subject>Algorithms</subject><subject>amino acid composition</subject><subject>autocorrelation</subject><subject>Chiroptera</subject><subject>Computational Biology - methods</subject><subject>Ensemble learning</subject><subject>Features extraction</subject><subject>Features selection</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - chemistry</subject><subject>Helicobacter pylori - metabolism</subject><subject>Machine learning</subject><subject>Predicting protein-protein interactions</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>protein-protein interactions</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Support Vector Machine</subject><subject>Swarm intelligence</subject><subject>yeasts</subject><issn>0039-9140</issn><issn>1873-3573</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv2zAMhYVhxZqm_QkbdNzFKWVatnQahmJrCxTopT0Lskwjyhwrk5QO-fdVkazXnggQHx_J9xj7KmAlQLTXm1W2k52zXdVQ40rUjcL2E1sI1WGFssPPbAGAutKigXN2kdIGoJCAX9g5dqixA71gdDuF3k58F0MmP1enyv2cKVqXfZj5TPlfiH9SafID2ZR5ss6tbQzbg6PEHUV68clb4nYe-Jom74qoKwp8d5hC9JfsbLRToqtTXbLn37-ebu6qh8fb-5ufD5XDps1V17UN2naQom3l2NtyrYaGxqEHp3Tt1Kictgr6ehQCpRy17UWrRwVK1g1KXLLvR93yxt89pWy2PjmailEU9smgkKiEVAo-RGuFtWpAdV1B5RF1MaQUaTS76Lc2HowA8xaG2ZhTGOYtDHMMo8x9O63Y91sa3qf-u1-AH0eAiicvnqJJztPsaPCRXDZD8B-seAVUHZ5y</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zandi, Farzad</creator><creator>Mansouri, Parvaneh</creator><creator>Goodarzi, Mohammad</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1908-3489</orcidid></search><sort><creationdate>20231201</creationdate><title>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</title><author>Zandi, Farzad ; Mansouri, Parvaneh ; Goodarzi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-77643a6d51665fba230904efdb0c892c8f8c9a80b2f11355f9ab169f808524353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>amino acid composition</topic><topic>autocorrelation</topic><topic>Chiroptera</topic><topic>Computational Biology - methods</topic><topic>Ensemble learning</topic><topic>Features extraction</topic><topic>Features selection</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - chemistry</topic><topic>Helicobacter pylori - metabolism</topic><topic>Machine learning</topic><topic>Predicting protein-protein interactions</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>protein-protein interactions</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Support Vector Machine</topic><topic>Swarm intelligence</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zandi, Farzad</creatorcontrib><creatorcontrib>Mansouri, Parvaneh</creatorcontrib><creatorcontrib>Goodarzi, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandi, Farzad</au><au>Mansouri, Parvaneh</au><au>Goodarzi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>265</volume><spage>124836</spage><pages>124836-</pages><artnum>124836</artnum><issn>0039-9140</issn><issn>1873-3573</issn><eissn>1873-3573</eissn><abstract>Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community. [Display omitted] •We extract and fused PsePSSM, PseAAC, AD and RSIV to enrich sequence for obtaining effective features.•We used binary bat meta-hurestic algorithm for removing unreleavant redundant features and saving predicting time.•In addition to using several classifiers, LogitBoost ensemble method is used to increase the accuracy of our model.•We show that fusion features outperform than others. Prediction accuracy does not decrease despite feature reduction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37393709</pmid><doi>10.1016/j.talanta.2023.124836</doi><orcidid>https://orcid.org/0000-0002-1908-3489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2023-12, Vol.265, p.124836, Article 124836
issn 0039-9140
1873-3573
1873-3573
language eng
recordid cdi_proquest_miscellaneous_3153815880
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
amino acid composition
autocorrelation
Chiroptera
Computational Biology - methods
Ensemble learning
Features extraction
Features selection
Helicobacter pylori
Helicobacter pylori - chemistry
Helicobacter pylori - metabolism
Machine learning
Predicting protein-protein interactions
Protein Interaction Mapping - methods
Protein Interaction Maps
protein-protein interactions
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Support Vector Machine
Swarm intelligence
yeasts
title Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20protein-protein%20interaction%20networks%20in%20yeast%20saccharomyces%20cerevisiae%20and%20helicobacter%20pylori&rft.jtitle=Talanta%20(Oxford)&rft.au=Zandi,%20Farzad&rft.date=2023-12-01&rft.volume=265&rft.spage=124836&rft.pages=124836-&rft.artnum=124836&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2023.124836&rft_dat=%3Cproquest_cross%3E3153815880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832840877&rft_id=info:pmid/37393709&rft_els_id=S0039914023005878&rfr_iscdi=true